29  Calculus

29.1 Fundamental limits

limx0sinxx=1 limx0ln(1+x)x=1 limx0ex1x=1
limx0(1+1x)x=e limx0loga(1+x)x=logae limx0ax1x=lna
Table 29.1: Fundamental limits

29.2 Derivatives

Function f(x) Derivative f(x)
y=a,aR y=0
y=xn,nN y=nxn1
y=xα,αR y=αxα1
y=x1n,n>0 y=1nx1n1
y=sinx y=cosx
y=cosx y=sinx
y=tanx y=1cos2x=1+tan2x
y=cotx y=1sin2x=(1+cot2x)
y=arcsinx y=11x2
y=arccosx y=11x2
y=arctanx y=11+x2
y=arccot x y=11+x2
y=ax y=axlna
y=ex y=ex
y=logax y=1xlna
y=lnx y=1x
f(x)=cg(x) f(x)=cg(x)
f(x)=g(x)+s(x) f(x)=g(x)+s(x)
f(x)=1g(x) f(x)=g(x)g(x)2
Table 29.2: Fundamental derivatives
  • Derivative of the product: [f(x)g(x)](x)=f(x)g(x)+f(x)g(x).

  • Derivative of the ratio: [f(x)g(x)](x)=f(x)g(x)f(x)g(x)[g(x)]2.

  • Derivative of the composition: [f(g(x))](x)=g(x)f(g(x)).

For example f(g(x))=ln(1+2x), then f(x)=ln(x) and g(x)=1+2x, hence [ln(1+2x)](x)=[1+2x](x)[ln(x)](1+x).

29.2.1 Taylor series

(29.1)f(x)=n=1f(n)(a)n!(xa)n=f(a)+f(a)(xa)+f(a)2!(xa)2+

29.3 Integrals

Immediate General
xndx=xn+1n+1+c f(x)ndx=f(x)n+1n+1+c
1xdx=log(x)+c f(x)f(x)dx=log(f(x))+c
axdx=loga(e)+c af(x)f(x)dx=af(x)loga(e)+c
exdx=ex+c exf(x)dx=ef(x)+c
sin(x)dx=cos(x)+c sin(f(x))f(x)dx=cos(f(x))+c
cos(x)dx=sin(x)+c cos(f(x))f(x)dx=sin(f(x))+c
1cos(x)2dx=tan(x)+c f(x)cos(f(x))2dx=tan(f(x))+c
1sin(x)2dx=cot(x)+c f(x)sin(f(x))2dx=cot(f(x))+c
11x2dx=arcsin(x)+c f(x)1f(x)2dx=arcsin(f(x))+c
1a2x2dx=arcsin(xa)+c f(x)a2f(x)2dx=arcsin(f(x)a)+c
11+x2dx=arctan(x)+c f(x)1+f(x)2dx=arctan(f(x))+c
Table 29.3: Fundamental integrals

29.3.1 Fundamental theorem

f(b)f(a)=abf(x)dxf(x)dx=f(x)+C.

29.3.2 Integration by parts

abf(x)g(x)dx=[f(x)g(x)]x=ax=babf(x)g(x)dx, or in compact form: abf(x)dg(x)=[f(x)g(x)]x=ax=babg(x)df(x)dx.

29.4 Useful relations

  • Newton binomial

(a+b)n=k=0(nk)ankbk.