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Introduction

General notations

Probability

• Ω abstract set representing the sample space of a random experiment. The elements in
𝜔 ∈ Ω are the possible outcomes of the experiment.

• 𝒫(Ω): power set of Ω, the set of all possible subsets of Ω.

• Most of subsets 𝐴, 𝐵, … will be thought as events.
• Collection of subsets 𝒜, ℬ, ….
• The empty set ∅.
• ℬ is a 𝜎-field, usually connected with the sample space Ω.
• ℬ(ℝ) is the Borel 𝜎-field of ℝ.
• ℙ is a probability measure function ℙ ∶ ℬ → [0, 1].
• (Ω, ℬ, ℙ) is a probability space.
• ⊔ is a shortcut to denote a disjoint union, for example writing 𝐴⊔𝐵 means that the sets

𝐴 and 𝐵 are disjoint, while writing 𝐴∪𝐵 means that the sets 𝐴 and 𝐵 are not disjoint.

Linear algebra

• Bold and capital letter stands for a matrix, e.g. X.
• Bold with small letter stands for a vector, e.g. x.
• Small letter not bold denotes a scalar, e.g. 𝑥.
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Part I

Probability
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1 Set and events

In probability, an event is interpreted as a collection of possible outcomes of a random exper-
iment.

Definition 1.1. (Random experiment)
A random experiment is any repeatable procedure that results in one out of a well-defined
set of possible outcomes.

• The set of possible outcomes is called sample space and denoted as Ω.
• A set of zero or more outcomes is an event.
• A map that goes from events to probabilities is called a probability function and it is

denoted as ℙ. Together, sample space, event space and probability function characterize
a random experiment.

1.1 Set operations

There are several definitions related to sets and their operation.

Definition 1.2. (Complementation)
The complement of a set 𝐴 is denoted by 𝐴𝑐 and represents the set of elements that do not
belong to 𝐴, i.e.

𝐴𝑐 = {𝜔 ∈ Ω ∶ 𝜔 ∉ 𝐴}. (1.1)

Definition 1.3. (Containment)
A set 𝐴 is said to be contained in a set 𝐵 if every element of 𝐴 is also an element of 𝐵.
Formally,

𝐴 ⊂ 𝐵 ⟺ 𝜔 ∈ 𝐴 ⟹ 𝜔 ∈ 𝐵 ∀𝜔 ∈ Ω. (1.2)

Definition 1.4. (Equality)
Given two sets, 𝐴 is equal to 𝐵, written 𝐴 = 𝐵, if and only if every element of 𝐴 is an element
of 𝐵 and every element of 𝐵 is an element of 𝐴. Formally,

𝐴 ⊂ 𝐵 and 𝐵 ⊂ 𝐴. (1.3)
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Figure 1.1: Elementary set operations.

Let’s now state some elementary operations between sets.

Definition 1.5. (Union)
The union of two sets, written 𝐴∪𝐵, is the set of 𝜔 that belongs either to 𝐴 or 𝐵, i.e.

𝐴∪𝐵 = {𝜔 ∈ Ω ∶ 𝜔 ∈ 𝐴 or 𝜔 ∈ 𝐵}. (1.4)

As a consequence of the definition of the union the following relations holds true, i.e.

𝐴∪𝐴 = 𝐴 𝐴∪Ω = Ω
𝐴∪∅ = 𝐴 𝐴⊔𝐴𝑐 = Ω

Definition 1.6. (Intersection)
The intersection of 𝐴 and 𝐵 is written 𝐴∩𝐵 and is the set of elements that belongs at the
same time to 𝐴 and 𝐵.

𝐴∩𝐵 = {𝜔 ∈ Ω ∶ 𝜔 ∈ 𝐴 and 𝜔 ∈ 𝐵}.

As a consequence of the definition of the intersection the following relations holds, i.e.

𝐴∩𝐴 = 𝐴 𝐴∩Ω = 𝐴
𝐴∩∅ = ∅ 𝐴⊓𝐴𝑐 = ∅

Moreover, let’s state the distributive laws of the union and the intersection, i.e.

Intersection. (𝐴∪𝐵)∩𝐶 = (𝐴∩𝐶)∪(𝐵∩𝐶)
Union. (𝐴∩𝐵)∪𝐶 = (𝐴∪𝐶)∩(𝐵∪𝐶) (1.5)
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And the De Morgan’s laws:

Intersection. (𝐴∩𝐵)𝑐 = (𝐴𝑐∪𝐵𝑐)
Union. (𝐴∪𝐵)𝑐 = (𝐴𝑐∩𝐵𝑐) (1.6)

Definition 1.7. (Difference)
The difference between two sets 𝐴 and 𝐵, written 𝐴−𝐵 (or also 𝐴/𝐵), is the set of elements
of 𝐴 that do not belong to 𝐵. Formally

𝐴 − 𝐵 = 𝐴∩𝐵𝑐 = {𝜔 ∈ Ω ∶ 𝜔 ∈ 𝐴 and 𝜔 ∉ 𝐵}. (1.7)

Disjoint reppresentation of a set

Given two set 𝐴 and 𝐵, then each one can be written as the union of disjoint sets. In
fact, their union can be decomposed into the union of three disjoint sets, i.e.

𝐴⊔𝐵 = (𝐴∩𝐵)⊔(𝐴∩𝐵𝑐)⊔(𝐴𝑐∩𝐵), (1.8)

and therefore for example the set 𝐴 can be written as

𝐴 = (𝐴∩𝐵)⊔(𝐴 − 𝐵) = (𝐴∩𝐵)⊔(𝐴∩𝐵𝑐). (1.9)

Definition 1.8. (Symmetric difference)
The symmetric difference between two sets 𝐴 and 𝐵 is written 𝐴Δ𝐵 and is the union of
elements of 𝐴 that do not belong to 𝐵 and of elements of 𝐵 that do not belong to 𝐴, i.e.

𝐴Δ𝐵 = (𝐴 − 𝐵)⊔(𝐵 − 𝐴) =
= (𝐴∩𝐵𝑐)⊔(𝐴𝑐∩𝐵) =
= {𝜔 ∶ 𝜔 ∈ 𝐴, 𝜔 ∉ 𝐵}⊔{𝜔 ∶ 𝜔 ∈ 𝐵, 𝜔 ∉ 𝐴}

Proposition 1.1. Given two set 𝐴, 𝐵, the symmetric difference can be written as

𝐴Δ𝐵 = (𝐴⊔𝐵)∩(𝐴𝑐⊔𝐵𝑐).

Proof: Proposition 1.1

Proof. Let’s denote with 𝐶 = 𝐴𝑐∩𝐵, then apply the distributive law of the union twice
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(Equation 1.5) and develop the computations, i.e.

𝐴Δ𝐵 = (𝐴∩𝐵𝑐)⊔(𝐴𝑐∩𝐵) =
= (𝐴∩𝐵𝑐)⊔𝐶 =
= (𝐴∪𝐶)∩(𝐵𝑐∪𝐶) =
= [𝐴∪(𝐴𝑐∩𝐵)]∩[𝐵𝑐∪(𝐴𝑐∩𝐵)] =
= [((𝐴⊔𝐴𝑐)∩(𝐴∪𝐵)]∩(𝐵𝑐∪𝐴𝑐)∩(𝐵𝑐⊔𝐵) =
= (𝐴∪𝐵)∩(𝐴𝑐∪𝐵𝑐)

1.2 Indicator function

Definition 1.9. (Indicator function)
An indicator function is a function that associate an 𝜔 ∈ 𝐴 ⊂ Ω to a real number, i.e. either
0 or 1. It is a tool that allows to transfer a computation from the set domain into the real
numbers domain, i.e. {0, 1}. Formally, 𝟙𝐴(𝜔) ∶ Ω → {0, 1}, i.e.

𝟙𝐴(𝜔) = {1 𝜔 ∈ 𝐴
0 𝜔 ∈ 𝐴𝑐

Proposition 1.2. The containment between two sets can be equivalently written in terms of
indicator functions:

𝐴 ⊂ 𝐵 ⟺ 𝟙𝐴(𝜔) ≤ 𝟙𝐵(𝜔), ∀𝜔 ∈ Ω.

Proof: Proposition 1.2

Proof. In order to prove the results in Proposition 1.2, let’s start by assuming 𝐴 ⊂ 𝐵
and let’s distinguish two main cases.

1. Assuming 𝜔 ∈ 𝐴 implies that 𝜔 ∈ 𝐵, and therefore one have an equality 1 = 𝟙𝐴 ≤
𝟙𝐵 = 1.

2. Assuming 𝜔 ∈ 𝐴𝑐 implies [𝜔 ∈ 𝐵]∪[𝜔 ∈ 𝐵𝑐]. In this situation for both cases one
will have that 𝟙𝐴 ≤ 𝟙𝐵, in fact:

• Considering 𝜔 ∈ 𝐵 implies that 0 = 𝟙𝐴 < 𝟙𝐵 = 1.
• Considering 𝜔 ∈ 𝐵𝑐 implies that 0 = 𝟙𝐴 ≤ 𝟙𝐵 = 0.

Hence, assuming 𝐴 ⊂ 𝐵 implies that 𝟙𝐴(𝜔) ≤ 𝟙𝐵(𝜔) for all 𝜔 ∈ Ω. Now let’s assume the
contrary: 𝟙𝐴 ≤ 𝟙𝐵 and let’s again distinguish in two main cases:
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1. Assuming 𝜔 ∈ 𝐴, i.e. 𝟙𝐴 = 1, the inequality 𝟙𝐴 ≤ 𝟙𝐵 holds and since the indicator
function is bounded by 1 by definition it is possible to write 1 = 𝟙𝐴 ≤ 𝟙𝐵 ≤ 1.
Therefore, one obtain 𝟙𝐵 = 1 and so 𝜔 ∈ 𝐵.

2. Assuming 𝜔 ∈ 𝐴𝑐, i.e. 𝟙𝐴 = 0, the inequality 𝟙𝐴 ≤ 𝟙𝐵 holds and it is possible to
write 0 = 𝟙𝐴 ≤ 𝟙𝐵 ≤ 1. Hence, when 𝜔 ∈ 𝐴𝑐, there are two possible cases, i.e.

• 𝟙𝐵 = 1, but this implies that 𝜔 ∈ 𝐵.
• 𝟙𝐵 = 0, but this implies that 𝜔 ∈ 𝐵𝑐.

When an 𝜔 ∈ 𝐴 implies that 𝜔 ∈ 𝐵, but the contrary do not holds true. Hence, it is
possible to conclude that 𝐴 ⊂ 𝐵.

1.3 Limits of sets

Let’s define the infimum (inf) and the lim inf of a sequence of sets 𝐴𝑘 as:

inf
𝑘≥𝑛

=
∞
⋂
𝑘=𝑛

𝐴𝑘, lim
𝑛→∞

inf 𝐴𝑛 = sup
𝑛≥1

inf
𝑘≥𝑛

𝐴𝑘 =
∞
⋃
𝑛=1

∞
⋂
𝑘=𝑛

𝐴𝑘.

Informally, the infimum of a sequence of sets is the smallest set in 𝑘 = 𝑛, … , ∞, it follows that
the limit of the infimum (lim inf) is the biggest (union) among all the smallest (intersection)
sets. Instead the supremum (sup) and the lim sup are defined as:

sup
𝑘≥𝑛

=
∞
⋃
𝑘=𝑛

𝐴𝑘, lim
𝑛→∞

sup 𝐴𝑛 = inf
𝑛≥1

sup
𝑘≥𝑛

𝐴𝑘 =
∞
⋂
𝑛=1

∞
⋃
𝑘=𝑛

𝐴𝑘.

On the other hand, the supremum of a sequence of sets is the biggest set in 𝑘 = 𝑛, … , ∞, it
follows that the limit of the supremum (lim sup) is the smallest (intersection) among all the
biggest (union) sets. Moreover, by De Morgan’s laws:

( lim
𝑛→∞

sup 𝐴𝑛)𝑐 = (
∞
⋂
𝑛=1

∞
⋃
𝑘=𝑛

𝐴𝑘)
𝑐

=
∞
⋃
𝑛=1

∞
⋂
𝑘=𝑛

𝐴𝑐
𝑘 = lim

𝑛→∞
inf 𝐴𝑐

𝑛,

and similarly

( lim
𝑛→∞

inf 𝐴𝑛)𝑐 = (
∞
⋃
𝑛=1

∞
⋂
𝑘=𝑛

𝐴𝑘)
𝑐

=
∞
⋂
𝑛=1

∞
⋃
𝑘=𝑛

𝐴𝑐
𝑘 = lim

𝑛→∞
sup 𝐴𝑐

𝑛.
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1.4 Fields and 𝜎-fields

Definition 1.10. (Field)
Let’s consider the sample space Ω, then a field is a non-empty class of subsets of Ω closed
under finite union, finite intersection and complementation. Formally, 𝒜 is a field if and only
if:

1. Ω ∈ 𝒜.
2. 𝐴 ∈ 𝒜 ⟹ 𝐴𝑐 ∈ 𝒜.
3. 𝐴, 𝐵 ∈ 𝒜 ⟹ 𝐴 ∪ 𝐵 ∈ 𝒜.

Definition 1.11. (𝜎-field)
Let’s consider the sample space Ω, then a 𝜎-field is a non-empty class of subsets of Ω closed
under countable union, countable intersection and complementation. Formally, ℬ is a 𝜎-field
if and only if:

1. Ω ∈ ℬ.
2. 𝐵 ∈ ℬ ⟹ 𝐵𝑐 ∈ ℬ.
3. 𝐵𝑖 ∈ ℬ, 𝑖 ≥ 1 ⟹ ⋃

𝑛≥1
𝐵𝑛 ∈ ℬ.

Field vs 𝜎-Field

The main difference between a field and a 𝜎-field is in the third property of the definitions.
A field is closed under finite union, namely the union of a finite sequence of events 𝐴𝑛
indexed by 𝑛 ∈ {0, 1, 2, … , 𝑛} (property 3 of Definition 1.10). On the other hand, a
𝜎-field is closed under countable union, namely the union of an infinite sequence of
events 𝐴𝑛 indexed by 𝑛 ∈ {0, 1, 2, … , 𝑛, 𝑛 + 1, … } (property 3. of the Definition 1.11).
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2 Probability measure

A probability space is a triple (Ω, ℬ, ℙ) where

1. Ω, the sample space.
2. ℬ, a 𝜎-field of subsets of Ω where each element is called event.
3. ℙ is a probability measure.

Definition 2.1. (Probability measure)
A probability measure ℙ is any function ℙ ∶ ℬ → [0, 1] such that

1. ℙ(𝐴) ≥ 0 for all sets 𝐴 ∈ ℬ.
2. ℙ(Ω) = 1.
3. ℙ is 𝜎-additive: if {𝐴𝑛}𝑛≥1 are a sequence of disjoint events in ℬ, then:

ℙ (
∞
⨆
𝑛=1

𝐴𝑛) =
∞

∑
𝑛=1

ℙ(𝐴𝑛) (2.1)

In general, a probability measure ℙ is a function that always goes from a 𝜎-field of subsets of
Ω to [0, 1].

2.1 Consequences of the axioms

Here we list some consequences of the axioms.

1. Probability of the complement of a set 𝐴:

ℙ(𝐴𝑐) = 1 − ℙ(𝐴). (2.2)

Proof: probability of the complement

Proof. Since it is possible to write Ω = 𝐴∪𝐴𝑐 as the union of disjoint set, we can apply
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𝜎-additivity (Equation 2.1) to obtain:

Ω = 𝐴⊔𝐴𝑐 ℙ⟶ ℙ(Ω) = ℙ(𝐴) + ℙ(𝐴𝑐)
⟹ 1 = ℙ(𝐴) + ℙ(𝐴𝑐)
⟹ ℙ(𝐴𝑐) = 1 − ℙ(𝐴)

2. Probability of the empty set ∅: ℙ(∅) = 0.

Proof: probability of the empty set

Proof. Using the fact that ℙ(Ω) = 1 by assumption and applying Equation 2.2:

ℙ(∅) = 1 − ℙ(∅𝑐) = 1 − ℙ(Ω) = 0.

3. Probability of the union of two sets:

ℙ(𝐴∪𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴∩𝐵).

Proof: probability of the union of two sets

Proof. Let’s write the sets 𝐴 and 𝐵 in terms of union of disjoint events (Equation 1.9)
and apply ℙ on both side and 𝜎-additivity (Equation 2.1).

ℙ(𝐴) = ℙ(𝐴∩𝐵) + ℙ(𝐴∩𝐵𝑐) ⟹ ℙ(𝐴∩𝐵𝑐) = ℙ(𝐴) − ℙ(𝐴∩𝐵)
ℙ(𝐵) = ℙ(𝐴∩𝐵) + ℙ(𝐵∩𝐴𝑐) ⟹ ℙ(𝐵∩𝐴𝑐) = ℙ(𝐵) − ℙ(𝐴∩𝐵) (2.3)

Let’s now decompose 𝐴∪𝐵 in the disjoint union of 3 events (Equation 1.8) and again,
apply ℙ on both side and 𝜎-additivity:

ℙ(𝐴∪𝐵) = ℙ(𝐴∩𝐵) + ℙ(𝐴∩𝐵𝑐) + ℙ(𝐴𝑐∩𝐵).

Substituting ℙ(𝐴∩𝐵𝑐) and ℙ(𝐴∩𝐵𝑐) from Equation 2.3 gives the result:

ℙ(𝐴∪𝐵) = ℙ(𝐴∩𝐵) + ℙ(𝐵) − ℙ(𝐴∩𝐵) + ℙ(𝐴) − ℙ(𝐴∩𝐵) =
= ℙ(𝐵) + ℙ(𝐴) − ℙ(𝐴∩𝐵)
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4. Monotonicity property: the measure ℙ is non-decreasing. Given two events 𝐴 and 𝐵,

𝐴 ⊂ 𝐵 ⟹ ℙ(𝐴) ≤ ℙ(𝐵).

Proof: monotonicity property

Proof. The proof of the statements follows once the set 𝐵 is written as disjoint union of
subsets of 𝐴 and 𝐵 (Equation 1.9). Then, applying the probability ℙ and 𝜎-additivity
on both sides one obtain:

ℙ(𝐵) = ℙ(𝐴) + ℙ(𝐵 − 𝐴) ≥ ℙ(𝐴).

6. Subadditivity: the measure ℙ is 𝜎-subadditive. For a sequence of events {𝐴𝑛}𝑛≥1 in ℬ
then:

ℙ (
∞
⋃
𝑛=1

𝐴𝑛) ≤
∞

∑
𝑛=1

ℙ(𝐴𝑛). (2.4)

7. Continuity: the measure ℙ is continuous for a monotone sequence of sets 𝐴𝑛 ∈ ℬ,
i.e.

𝐴𝑛 ↑ 𝐴 ⟹ ℙ(𝐴𝑛) ↑ ℙ(𝐴), 𝐴𝑛 ↓ 𝐴 ⟹ ℙ(𝐴𝑛) ↓ ℙ(𝐴). (2.5)

8. Fatou’s lemma: consider a sequence of events {𝐴𝑛}𝑛≥1 in ℬ, then we have the following
result:

ℙ(lim inf
𝑛→∞

𝐴𝑛) ≤ lim inf
𝑛→∞

ℙ(𝐴𝑛) ≤ lim sup
𝑛→∞

ℙ(𝐴𝑛) ≤ ℙ(lim sup
𝑛→∞

𝐴𝑛). (2.6)

2.2 Maps and inverse maps

Let’s be very general and consider a probability space (Ω, ℬ, ℙ) and consider a map 𝑋 that
associate an 𝜔 ∈ Ω to an outcome 𝜔′ ∈ Ω′, i.e.

𝑋 ∶ (Ω, ℬ) → (Ω′, ℬ′).

Then, 𝑋 determine a function 𝑋−1 called inverse map, i.e.

𝑋−1 ∶ (Ω′, ℬ′) → (Ω, ℬ).

In general, given a subset 𝐴′ ⊂ ℬ′, its inverse map is defined as

𝑋−1(𝐴′) = {𝜔 ∈ Ω ∶ 𝑋(𝜔) ∈ 𝐴′}.
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Example: Map and inverse map

Example 2.1. Let’s consider a deck of poker cards with 52 cards in total. We have 4
groups of 13 distinct cards, where the Jack (J) is 11, the Queen (Q) is 12, the King (K)
is 13 and Ace (A) is 14. Then, let’s consider a very general experiment setup in which
we define a map

𝑋(𝜔) =
⎧{
⎨{⎩

+1 if 𝜔 ∈ {2, 3, 4, 5, 6}
0 if 𝜔 ∈ {7, 8, 9}
−1 if 𝜔 ∈ {10, 11, 12, 13, 14}

In this case the sample space will composed by 54 elements, i.e. all the cards, and Ω′ =
{−1, 0, 1}. Let’s say that we observe the value 𝑋(𝜔) = {+1} ⊂ Ω′. Then, the inverse
map is the set 𝑋−1({+1}), i.e.

𝑋−1({+1}) = {𝜔 ∈ Ω ∶ 𝑋(𝜔) ∈ {+1}} = {2, 3, 4, 5, 6}.

In practice, we have to search those 𝜔’s such that 𝑋(𝜔) = {1}.

Here we list some properties of inverse maps.

1. 𝑋−1(Ω′) = Ω.
2. 𝑋−1(∅) = ∅.
3. 𝑋−1(𝐴′𝑐) = (𝑋−1(𝐴′))𝑐.
4. 𝑋−1(Ω′∩𝐴′) = Ω∩𝑋−1(𝐴′𝑐).
5. 𝑋−1(⋃𝑛 𝐴′

𝑛) = ⋃𝑛 𝑋−1(𝐴′
𝑛) for all 𝐴′

𝑛 ∈ ℬ′.

Properties of inverse maps

Let’s consider two sets 𝐴′ and 𝐵′ both in Ω′. Then, by definition:

𝑋−1(𝐴′∪𝐵′) = {𝜔 ∈ Ω ∶ 𝑋(𝜔) ∈ 𝐴′∪𝐵′} =
= {𝜔 ∈ Ω ∶ 𝑋(𝜔) ∈ 𝐴′ OR 𝑋(𝜔) ∈ 𝐵′} =
= {𝜔 ∈ Ω ∶ 𝑋(𝜔) ∈ 𝐴′}∪{𝜔 ∈ Ω ∶ 𝑋(𝜔) ∈ 𝐵′} =
= 𝑋−1(𝐴′)∪𝑋−1(𝐵′)

Similarly for the intersection, i.e.

𝑋−1(𝐴′∩𝐵′) = {𝜔 ∈ Ω ∶ 𝑋(𝜔) ∈ 𝐴′∩𝐵′} =
= {𝜔 ∈ Ω ∶ 𝑋(𝜔) ∈ 𝐴′ AND 𝑋(𝜔) ∈ 𝐵′} =
= {𝜔 ∈ Ω ∶ 𝑋(𝜔) ∈ 𝐴′}∩{𝜔 ∈ Ω ∶ 𝑋(𝜔) ∈ 𝐵′} =
= 𝑋−1(𝐴′)∩𝑋−1(𝐵′)
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Proposition 2.1. If ℬ′ is a 𝜎-field of subsets of Ω′, then 𝑋−1(ℬ′) is a 𝜎-field of subsets of
Ω. Moreover, if 𝒞′ is a class of subsets of Ω′, then

𝑋−1(𝜎(𝐶′)) = 𝜎(𝑋−1(𝐶′)),

that is. the inverse image of the 𝜎-field generated by the class 𝒞′ ∈ Ω′ is the same as the 𝜎-field
generated in Ω by the inverse image 𝑋−1. In practice, the counter image and the generators
commute. Usually can be difficult to know all about the 𝜎-field ℬ′, however if we know a class
of subset that generate it, namely 𝒞′ ∈ Ω′, we are able to recreate the 𝜎-field.

2.2.1 Measurable maps

A measurable space is composed by a sample space Ω and a 𝜎-field of subsets of Ω, namely
ℬ.

Definition 2.2. (Measurable map)
Let’s consider the function 𝑋 ∶ (Ω, ℬ) → (Ω′, ℬ′), then 𝑋 is ℬ-measurable, namely 𝑋 ∈
ℬ/ℬ′, iff:

𝑋 ∈ ℬ/ℬ′ ⟺ 𝑋−1(ℬ′) ∈ ℬ.

Note that the measurability concept is very important since only if 𝑋 is measurable it is
possible to make probability statements about 𝑋. Since, 𝑋−1(𝐵′) ∈ ℬ for all 𝐵′ ∈ ℬ′ it is
possible to assign probabilities to the events that are in ℬ.

Definition 2.3. (Test for measurability)
Consider a map 𝑋 ∶ (Ω, ℬ) → (Ω′, ℬ′) and the class 𝒞′ that generates the 𝜎-field ℬ′, i.e. ℬ′ =
𝜎(𝒞′). Then 𝑋 is ℬ-measurable iff:

𝑋−1(𝒞′) ⊂ ℬ.
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3 Random variables

Definition 3.1. (Random variable)
Let’s consider a probability space (Ω, ℱ, ℙ), then a random variable is a map where (Ω′, ℬ′) =
(ℝ, ℬ(ℝ)) and therefore the map takes values on the real line, i.e.

𝑋 ∶ (Ω, ℬ) → (ℝ, ℬ(ℝ))

and such that:
∀𝐵 ∈ ℬ(ℝ) 𝑋−1(𝐵) = {𝜔 ∈ Ω ∶ 𝑋(𝜔) ∈ 𝐵} ⊂ ℬ

Note that when 𝑋 is a random variable the test for measurability (Definition 2.3), became:

𝑋−1((−∞, 𝑦]) = [𝑋(𝜔) ≤ 𝑦] ⊂ ℬ ∀𝑦 ∈ ℝ

Discrete vs continuous random variables

Definition 3.2. Let 𝑋 be a random variable with set of possible outcomes Ω′. Then, 𝑋
is called discrete random variable if Ω′ is either a finite set or a countably infinite set.
𝑋 is called continuous random variable if Ω′ is either a an uncountable infinite set.

3.1 Induced distribution function

Consider a probability space (Ω, ℬ, ℙ) and a measurable map 𝑋 ∶ (Ω, ℬ) → (Ω′, ℬ′), then
the composition ℙ ∘ 𝑋−1 is again a map. In this way at each element 𝜔 ∈ Ω is attached a
probability measure. In fact, the composition is a map such that

ℙ ∘ 𝑋−1 ∶ (Ω′, ℬ′) → [0, 1] ⟺ (Ω′, ℬ′) 𝑋−1
⟶ (Ω, ℬ) ℙ⟶ [0, 1]

In general, the probability of a subset 𝐴′ ∈ ℬ′ is denoted equivalently as:

ℙ ∘ 𝑋−1(𝐴′) = ℙ(𝑋−1(𝐴′)) = ℙ(𝑋(𝜔) ∈ 𝐴′)
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Example: Map and inverse map (continued)

Example 3.1. Let’s continue from the Example 2.1 and compute the probability of
ℙ ∘ 𝑋−1({+1}). Let’s consider one random extraction from the 52 cards, then for each
distinct number we have 4 copies. Therefore the probability is computed as:

ℙ(𝑋−1({+1})) = ℙ({𝜔 ∈ Ω ∶ 𝑋(𝜔) ∈ {−1}}) =
= ℙ({2, 3, 4, 5, 6}) =

= 5 ⋅ 4
52 = 5

13 ≈ 38.46%

Let’s now consider the probability of observing either {+1} or {−1}, then

ℙ(𝑋−1({−1, +1})) = ℙ({𝜔 ∈ Ω ∶ 𝑋(𝜔) ∈ {−1, +1}}) =
= ℙ({2, 3, 4, 5, 6, 10, 11, 12, 13, 14}) =

= 10 ⋅ 4
52 = 10

13 ≈ 76.92%

Finally, by property of the probability measure ℙ(𝑋(𝜔) ∈ {0}) = 1 − ℙ(𝑋(𝜔) ∈
{−1, +1}) ≈ 23.08%.

3.1.1 Distribution function on ℝ

When 𝑋 is a random variable the composition ℙ(𝑋−1(𝐴′)) is a probability measure induced
on ℝ by the distribution:

ℙ(𝑋−1((−∞, 𝑦]) = ℙ(𝑋 ≤ 𝑦) ∀𝑦 ∈ ℝ

Hence, it is possible to attach to a random variable a distribution function of 𝑋 that is a
measure induced on the real line ℝ and defined as:

𝐹𝑋(𝑦) = ℙ(𝑋(𝜔) ∈ [−∞, 𝑦)) = ℙ(𝑋 ≤ 𝑦)

The distribution of 𝑋 is a function that goes from 𝐹𝑋 ∶ (ℝ, ℬ(ℝ)) → [0, 1]. If a random variable
has a continuous and it’s distribution function is differentiable, then it is possible to define the
density as:

𝑓𝑋(𝑦) = 𝑑𝐹𝑋(𝑦)
𝑑𝑦 ⟺ 𝑑𝐹𝑋(𝑦) = 𝑓𝑋(𝑦)𝑑𝑦 (3.1)
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4 Independence

Definition 4.1. (Independent events)
Given a probability space (Ω, ℬ, ℙ), two events 𝐴, 𝐵 ∈ ℬ are said to be independent if:

ℙ(𝐴∩𝐵) = ℙ(𝐴) ℙ(𝐵)

A finite sequence of events, namely 𝐴1, 𝐴2, … , 𝐴𝑛 ∈ ℬ, is said to be independent, if for all
2 ≤ 𝑗 ≤ 𝑛 and 1 ≤ 𝑘1 ≤ 𝑘2 ≤ … ≤ 𝑘𝑗 ≤ 𝑛 we have:

ℙ(𝐴𝑘1
∩𝐴𝑘2

∩ … ∩𝐴𝑘𝑛
) =

𝑛
∏
𝑗=1

ℙ(𝐴𝑘𝑗
)

Events not pairwise independent.

Consider the probability space (Ω, 𝒫(Ω), ℙ), where Ω = {1, 2, 3, 4, 5, 6} and for every
𝜔𝑖 ∈ Ω we have a constant probability ℙ(𝜔𝑖) = 1

6 ∀𝑖. Consider the events 𝐴1 = {1, 2, 3, 4}
and 𝐴2 = 𝐴3 = {4, 5, 6}, are these events independent? Note that the events have
probabilities ℙ(𝐴1) = 2

3 , ℙ(𝐴2) = ℙ(𝐴3) = 1
2 . Consider all the events 𝐴1, 𝐴2, 𝐴3, then

the intersection of those sets gives [𝐴1∩𝐴2∩𝐴3] = {4} that has probability ℙ({4}) = 1
6 .

Then we can compute the product of the probabilities of the single events:

1
2 = ℙ([𝐴1∩𝐴2∩𝐴3]) = ℙ(𝐴1)ℙ(𝐴2)ℙ(𝐴3) = 2

3
1
2

1
2 = 1

2
Hence the events 𝐴1, 𝐴2, 𝐴3 are pairwise independent. Consider now only the events
𝐴2, 𝐴3, the probability of the joint set, namely [𝐴2∩𝐴3] = {4, 5, 6}, is ℙ({4, 5, 6}) = 1

2 .
However the product of the probabilities of the single events gives a different result:

1
2 = ℙ([𝐴2∩𝐴3]) ≠ ℙ(𝐴2)ℙ(𝐴3) = 1

2
1
2 = 1

4
Hence the events 𝐴2, 𝐴3 are NOT pairwise independent.

Proposition 4.1. (Independence and complementation)
If two events 𝐴 and 𝐵 are independent, then also are 𝐴 and 𝐵𝑐, 𝐵 and 𝐴𝑐, 𝐴𝑐 and 𝐵𝑐 are
independent.
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Independence and complementation

Proof. If two events 𝐴 and 𝐵 are independent, then also are 𝐴 and 𝐵𝑐, 𝐵 and 𝐴𝑐, 𝐴𝑐

and 𝐵𝑐. In order to prove that 𝐴 and 𝐵𝑐 are independent let’s write the event 𝐴 as union
of disjoint events (Equation 1.9). Then since 𝐴 and 𝐵 are assumed to be independent:

ℙ(𝐴) = ℙ(𝐴∩𝐵) + ℙ(𝐴∩𝐵𝑐) =
= ℙ(𝐴)ℙ(𝐵) + ℙ(𝐴∩𝐵𝑐)

Recovering ℙ(𝐴∩𝐵𝑐) one obtain:

ℙ(𝐴∩𝐵𝑐) = ℙ(𝐴) − ℙ(𝐴)ℙ(𝐵) =
= ℙ(𝐴)(1 − ℙ(𝐵)) =
= ℙ(𝐴)ℙ(𝐵𝑐)

The same follows for 𝐴𝑐 and 𝐵. Now let’s consider the case of 𝐴𝑐 and 𝐵𝑐. Using the
same trick done previously 𝐴𝑐 = [𝐴𝑐∩𝐵]⊔[𝐴𝑐∩𝐵𝑐]. Since we have already proven that
𝐵𝑐 and 𝐴 are independent, we can write:

ℙ(𝐴𝑐) = ℙ([𝐴𝑐∩𝐵]⊔[𝐴𝑐∩𝐵𝑐]) =
= ℙ(𝐴𝑐∩𝐵) + ℙ(𝐴𝑐∩𝐵𝑐) =
= ℙ(𝐴𝑐)ℙ(𝐵) + ℙ(𝐴𝑐∩𝐵𝑐)

Recovering ℙ(𝐴𝑐∩𝐵𝑐) one obtain:

ℙ(𝐴𝑐∩𝐵𝑐) = ℙ(𝐴𝑐) − ℙ(𝐴𝑐)ℙ(𝐵) =
= ℙ(𝐴𝑐)(1 − ℙ(𝐵)) =
= ℙ(𝐴𝑐)ℙ(𝐵𝑐)
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5 Expectation

The expectation represents a central value of a random variable and has a measure theory
counterpart as a Lebesgue-Stieltjes integral of 𝑋 with respect to a (probability) measure
ℙ. This kind of integration is defined in steps. First it is shown the integration of simple
functions and then extended to more general random variables. In general, let’s consider a
probability space (Ω, ℬ, ℙ) and a random variable 𝑋 such that

𝑋 ∶ (Ω, ℬ) ⟶ (ℝ̄, ℬ(ℝ̄))

where ℝ̄ = [−∞, ∞]. Then, the expectation of 𝑋 is denoted as:

𝔼{𝑋} = ∫
Ω

𝑋𝑑ℙ = ∫
Ω

𝑋(𝜔)ℙ(𝑑𝜔)

as the Lebesgue-Stieltjes integral of 𝑋 with respect to the (probability) measure ℙ.

5.1 Simple functions

In general a random variable 𝑋(𝜔) is simple if it has a finite range. Let’s consider a probability
space (Ω, ℬ, ℙ) and consider a ℬ/ℬ(ℝ)-measurable simple function 𝑋 ∶ Ω → ℝ, i.e.

𝑋(𝜔) =
𝑛

∑
𝑖=1

𝑎𝑖𝟙𝐴𝑖
(𝜔), (5.1)

where 𝑎𝑖 ∈ ℝ and 𝐴𝑖 ∈ ℬ are a disjoint partition of the sample space, i.e. ⨆𝑛
𝑖=1𝐴𝑖 = Ω. Let’s

denote the set of all simple functions on Ω as ℰ. In this settings, ℰ is a vector space. This
implies that he following two properties holds.

1. Constant: given a simple function 𝑋 ∈ ℰ, then 𝛼𝑋 ∈ ℰ. In fact:

𝛼𝑋 =
𝑛

∑
𝑖=1

𝛼𝑎𝑖𝟙𝐴𝑖
=

𝑛
∑
𝑖=1

𝑎∗
𝑖𝟙𝐴𝑖

∈ ℰ (5.2)

where 𝑎∗
𝑖 = 𝛼𝑎𝑖.
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2. Linearity: given two simple function 𝑋, 𝑌 ∈ ℰ, then 𝑋 + 𝑌 ∈ ℰ. In fact:

𝑋 + 𝑌 =
𝑛

∑
𝑖=1

𝑎𝑖𝟙𝐴𝑖
+

𝑚
∑
𝑗=1

𝑏𝑗𝟙𝐵𝑗
=

=
𝑛

∑
𝑖=1

𝑚
∑
𝑗=1

(𝑎𝑖 + 𝑏𝑗)𝟙𝐴𝑖
𝟙𝐵𝑗

=

=
𝑛

∑
𝑖=1

𝑚
∑
𝑗=1

(𝑎𝑖 + 𝑏𝑗)𝟙𝐴𝑖∩𝐵𝑗

(5.3)

where the sequence of sets {𝐴𝑖𝐵𝑗 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚} form a disjoint partition of
Ω.

3. Product: given two simple function 𝑋, 𝑌 ∈ ℰ, then 𝑋𝑌 ∈ ℰ. In fact:

𝑋𝑌 =
𝑛

∑
𝑖=1

𝑎𝑖𝟙𝐴𝑖

𝑚
∑
𝑗=1

𝑏𝑗𝟙𝐵𝑗
=

=
𝑛

∑
𝑖=1

𝑚
∑
𝑗=1

(𝑎𝑖𝑏𝑗)𝟙𝐴𝑖
𝟙𝐵𝑗

=

=
𝑛

∑
𝑖=1

𝑚
∑
𝑗=1

(𝑎𝑖𝑏𝑗)𝟙𝐴𝑖∩𝐵𝑗

(5.4)

5.1.1 Measurability

Simple functions are the building blocks in the definition of the expectation in terms of
Lebesgue-Stieltjes integral. In fact a known theorem called Measurability theorem shows
that any measurable function can be approximated by a sequence of simple functions.

Theorem 5.1. Suppose that 𝑋(𝜔) ≥ 0 for all 𝜔 ∈ Ω. Then, 𝑋 is ℬ/ℬ(ℝ) measurable if and
only if there exists simple functions 𝑋𝑛 ∈ ℰ and

0 ≤ 𝑋𝑛 ↑ 𝑋 ⟺ 𝑋 = lim
𝑛→∞

↑ 𝑋𝑛

5.2 Expectation of Simple Functions

The expectation of a simple function 𝑋 is defined as:

𝔼{𝑋} =
𝑛

∑
𝑖=1

𝑎𝑖ℙ(𝐴𝑖)

where |𝑎𝑖| < ∞.
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5.2.1 Properties

1. Non-negativity: If 𝑋 ≥ 0 and 𝑋 ∈ ℰ then 𝔼{𝑋} ≥ 0

Expectation of a simple function is non-negative

Proof. By definition of simple functions

2. Linearity: the expectation of simple function is linear, i.e.

𝔼{𝛼𝑋 + 𝛽𝑌 } = 𝛼𝔼{𝑋} + 𝛽𝔼{𝑌 }

Expectation of a simple function is linear

Proof. Let’s consider two simple functions, i.e.

𝑋(𝜔) =
𝑛

∑
𝑖=1

𝑎𝑖𝟙𝐴𝑖
(𝜔) and 𝑌 (𝜔) =

𝑚
∑
𝑗=1

𝑏𝑗𝟙𝐵𝑗
(𝜔),

and let’s fix 𝛼, 𝛽 ∈ ℝ. Then, by the second property of the vector space ℰ (Equation 5.3)
it is possible to write:

𝛼𝑋 + 𝛽𝑌 =
𝑛

∑
𝑖=1

𝑚
∑
𝑗=1

(𝛼𝑎𝑖 + 𝛽𝑏𝑗)𝟙𝐴𝑖∩𝐵𝑗

Then, taking the expectation on both sides:

𝔼{𝛼𝑋 + 𝛽𝑌 } =
𝑛

∑
𝑖=1

𝑚
∑
𝑗=1

(𝛼𝑎𝑖 + 𝛽𝑏𝑗)ℙ(𝐴𝑖∩𝐵𝑗) =

=
𝑛

∑
𝑖=1

𝛼𝑎𝑖
𝑚

∑
𝑗=1

ℙ(𝐴𝑖∩𝐵𝑗) +
𝑚

∑
𝑗=1

𝛽𝑏𝑗
𝑛

∑
𝑖=1

ℙ(𝐴𝑖∩𝐵𝑗)

Fixing 𝑖, the sequence 𝐴𝑖∩𝐵𝑗 for 𝑗 = 1, … , 𝑛 is composed by disjoint events since by
definition 𝐵𝑗 are disjoint. Hence, applying 𝜎-additivity it is possible to write:

𝑚
∑
𝑗=1

ℙ(𝐴𝑖∩𝐵𝑗) = ℙ (
𝑚
⨆
𝑗=1

𝐴𝑖∩𝐵𝑗) =

= ℙ (𝐴𝑖∩ (
𝑚
⨆
𝑗=1

𝐵𝑗)) =

= ℙ (𝐴𝑖∩Ω) = ℙ (𝐴𝑖)
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Therefore, the expectation simplifies in:

𝔼{𝛼𝑋 + 𝛽𝑌 } =
𝑛

∑
𝑖=1

𝛼𝑎𝑖ℙ(𝐴𝑖) +
𝑚

∑
𝑗=1

𝛽𝑏𝑗ℙ(𝐵𝑗) =

= 𝛼𝔼{𝑋} + 𝛽𝔼{𝑌 }

5.3 Review of inequalities

5.3.1 Modulus inequality

Definition 5.1. (Modulus Inequality)
Let’s consider a random variable 𝑋 ∈ ℒ1, where ℒ1 stands for the set of integrable random
variables, i.e.

ℒ1 = {𝑋 ∶ Ω → ℝ ∶ 𝑋 is a r.v. , 𝔼{|𝑋|} < ∞}
Then, the modulus inequality states that:

|𝔼{𝑋}| ≤ 𝔼{|𝑋|}

5.3.2 Markov inequality

Definition 5.2. (Markov Inequality)
Let’s consider a random variable 𝑋 ∈ ℒ1 and fix a 𝜆 > 0, then by the Markov inequality:

ℙ(|𝑋| ≥ 𝜆) ≤ 1
𝜆𝔼{|𝑋|}

5.3.3 Chebychev inequality

Definition 5.3. (Chebychev Inequality)
Consider a random variable 𝑋 with first and second moment finite, i.e.

𝔼{|𝑋|} < ∞, 𝕍{|𝑋|} < ∞

then by the Chebychev inequality:

ℙ(𝑋 ≥ 𝜆) ≤ 1
𝜆2 𝔼{|𝑋|2} (5.5)
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5.3.4 Holder inequality

Definition 5.4. (Holder Inequality)
Let’s consider two numbers 𝑝 and 𝑞 such that

𝑝 > 1, 𝑞 > 1, 1
𝑝 + 1

𝑞 = 1

and let’s consider two random variables 𝑋 and 𝑌 such that:

𝔼{|𝑋|𝑝} < ∞, 𝔼{|𝑌 |𝑞} < ∞

Then,
|𝔼{𝑋𝑌 }| ≤ 𝔼{|𝑋𝑌 |} ≤ (𝔼{|𝑋|𝑝}) 1

𝑝 (𝔼{|𝑌 |𝑞}) 1
𝑞 (5.6)

In terms of norms:
||𝑋𝑌 ||1 ≤ ||𝑋||𝑝||𝑌 ||𝑞

5.3.5 Schwartz inequality

Definition 5.5. (Schwartz Inequality)
Consider two random variables 𝑋, 𝑌 ∈ ℒ2, i.e. with first and second moment finite, i.e.

𝔼{|𝑋|} < ∞, 𝔼{𝑋2} < ∞

Then
|𝔼{𝑋𝑌 }| ≤ 𝔼{|𝑋𝑌 |} ≤ √𝔼{𝑋2}𝔼{𝑌 2} (5.7)

In terms of norms:
||𝑋𝑌 ||1 ≤ ||𝑋||2||𝑌 ||2

Note that this is a special case of Holder inequality (Equation 5.6) with 𝑝 = 𝑞 = 2.

5.3.6 Minkowski inequality

Definition 5.6. (Minkowski Inequality)
For 1 ≤ 𝑝 < ∞ let’s consider two random variables 𝑋, 𝑌 ∈ ℒ𝑝, then 𝑋 + 𝑌 ∈ ℒ𝑝 and

||𝑋 + 𝑌 ||𝑝 ≤ ||𝑋||𝑝 + ||𝑌 ||𝑝 (5.8)

Note that the triangular inequality is a special case of Minkowski inequality with 𝑝 = 1, i.e.

|𝑋 + 𝑌 | ≤ |𝑋| + |𝑌 | (5.9)
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5.3.7 Jensen inequality

Definition 5.7. (Jensen Inequality)
Let’s consider a convex function 𝑢 ∶ ℝ → ℝ. Suppose that 𝔼{𝑋} < ∞ and 𝔼{|𝑢(𝑋)|} < ∞,
then

𝔼{𝑢(𝑋)} ≥ 𝑢(𝔼{𝑋}) (5.10)

if 𝑢 is concave the results revert, i.e.

𝔼{𝑢(𝑋)} ≤ 𝑢(𝔼{𝑋}) (5.11)
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6 Conditional expectation

Theorem 6.1. (Radom Nikodym)
Consider a measure space (Ω, ℬ) and two measures 𝜇, 𝜈 such that 𝜇 is 𝜎-finite (Definition 31.4)
and 𝜇 << 𝜈 (Definition 31.1). Then there exists a measurable function 𝑋 ∶ Ω → ℝ such that:

𝜇(𝐵) = ∫
𝐴

𝑋𝑑𝜈 ∀𝐵 ∈ ℬ

Definition 6.1. (Conditional expectation)
Given a probability space (Ω, ℬ, ℙ), consider 𝒢 as a sub 𝜎-field of ℬ, i.e. 𝒢 ⊂ ℬ. Let’s consider
a random variable 𝑋 ∶ Ω → ℝ with finite expectation 𝔼{|𝑋|} < +∞. We define a conditional
expectation for 𝑋 given 𝒢, any random variable 𝑌 = 𝔼{𝑋|𝒢} such that:

1. 𝑌 has finite expectation, i.e. 𝔼{|𝑌 |} < +∞.
2. 𝑌 is 𝒢-measurable.
3. 𝔼{𝟙𝐴𝑌 } = 𝔼{𝟙𝐴𝑋}, ∀𝐴 ∈ 𝒢, namely if 𝑋 and 𝑌 are restricted to 𝐴 ∈ 𝒢, then their

expectation coincides.

A 𝜎-field can be used to describe our state of information. It means that, ∀𝐴 ∈ 𝒢 we already
know if the event A has occurred or not. Therefore, when we insert in 𝒢 the events that
we know were already occurred, we are saying that the random variable 𝑌 is 𝒢-measurable,
i.e. the value of 𝑌 is not stochastic once we know the information contained in 𝒢. Moreover,
the random variable 𝑌 = 𝔼{𝑋|𝒢} represent a prediction of the random variable 𝑋, given the
information contained in the sub 𝜎-field 𝒢.

Definition 6.2. (Predictor)
Consider 𝑍 any 𝒢-measurable random variable. Then 𝑍 can be interpreted as a predictor of
another random variable 𝑋 under the information contained in the 𝜎-field 𝒢. However, when
we substitute 𝑋 with its prediction, namely 𝑍, we make an error given by the difference 𝑋 −𝑍.
In the special case in which 𝔼{|𝑍|2} < ∞, we can take as error function the mean squared
error, i.e.

𝔼{error2} = 𝔼{(𝑋 − 𝑍)2}
We say that the conditional expectation 𝔼{𝑋|𝒢} is the best predictor in the sense that:

𝔼{(𝑋 − 𝔼{𝑋|𝒢})2} = min
𝑍∈𝒵

𝔼{(𝑋 − 𝑍)2}
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Hence, 𝔼{𝑋|𝒢} is the best predictor that minimize the mean squared error over the class 𝒵
composed by 𝒢-measurable functions with finite second moment, formally

𝒵 = {𝑍 𝒢-measurable and 𝔼{|𝑍|2} < ∞}

6.1 Properties of conditional expectation

Here we state some useful properties of conditional expectation:

1. Linearity: 𝔼{𝑎𝑋 + 𝑏𝑌 |𝒢} = 𝑎𝔼{𝑋|𝒢} + 𝑏𝔼{𝑌 |𝒢}, for all constants 𝑎, 𝑏 ∈ ℝ.
2. Positive: 𝑋 ≥ 0 ⟹ 𝔼{𝑋|𝒢} ≥ 0.
3. Measurability: If 𝑌 is 𝒢-measurable, then 𝔼{𝑋𝑌 |𝒢} = 𝑌 𝔼{𝑋|𝒢}.
4. Constant: 𝔼{𝑎|𝒢} = 𝑎 ∀𝑎 ∈ ℝ. In general, if 𝑋 is 𝒢-measurable then 𝔼{𝑋|𝒢} = 𝑋,

i.e. is not stochastic.
5. Independence: If 𝑋 is independent from the 𝜎-field 𝒢, then 𝔼{𝑋|𝒢} = 𝔼{𝑋}.
6. Chain rule: consider two two sub 𝜎-fields of ℬ such that 𝒢1 ⊂ 𝒢2, then we can write:

𝔼{𝑋|𝒢1} = 𝔼{𝔼{𝑋|𝒢2}|𝒢1}

Remember that, when using this property it is mandatory to take the conditional ex-
pectation before with respect to the greatest 𝜎-field, i.e. the one that contains more
information (in this case 𝒢2), and then with respect to the smallest one (in this case 𝒢1).

6.2 Conditional probability

Definition 6.3. (Conditional probability)
Given a probability space (Ω, ℱ, ℙ), consider 𝒢 as a sub 𝜎-field of ℱ, i.e. 𝒢 ⊂ ℱ. Then the
general definition of the conditional probability of an event 𝐴 given 𝒢 is:

ℙ(𝐴|𝒢) = 𝔼(𝟙𝐴|𝒢) (6.1)

Instead, the elementary definition do not consider the conditioning with respect to a 𝜎-
field, but instead with respect to a single event 𝐵. In practice, take an event 𝐵 ∈ ℱ such that
0 < ℙ(𝐵) < 1, then ∀𝐴 ∈ ℱ the conditional probability of 𝐴 given 𝐵 is defined as:

ℙ(𝐴|𝐵) = ℙ(𝐴 ∩ 𝐵)
ℙ(𝐵) , ℙ(𝐴|𝐵𝑐) = ℙ(𝐴 ∩ 𝐵𝑐)

ℙ(𝐵𝑐) (6.2)
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Elementary and the general definition are equivalent

The elementary (Equation 6.2) and the general (Equation 6.1) definitions are equivalent,
in fact consider a sub 𝜎-field 𝒢 which provides only the information concerning whenever
𝜔 is in 𝐵 or not. A 𝜎-field of this kind will have the form 𝒢𝐵 = {Ω, ∅, 𝐵, 𝐵𝑐}. Then,
consider a 𝒢𝐵-measurable function, 𝑓 ∶ Ω → ℝ, such that:

𝑓(𝜔) = {𝛼 𝜔 ∈ 𝐵
𝛽 𝜔 ∈ 𝐵𝑐

It remains to find 𝛼 and 𝛽 in the following expression:

ℙ(𝐴|𝒢𝐵) = 𝔼{𝟙𝐴|𝒢𝐵} = 𝛼𝟙𝐵 + 𝛽𝟙𝐵𝑐

Note that, the joint probability of 𝐴 and 𝐵 can be obtained as:

ℙ(𝐴 ∩ 𝐵) = 𝔼{𝟙𝐴𝟙𝐵} = 𝔼{𝔼{𝟙𝐴𝟙𝐵|𝒢𝐵}} = 𝔼{𝔼{𝟙𝐴|𝒢𝐵}𝟙𝐵} =
= 𝔼{ℙ(𝐴|𝒢𝐵)𝟙𝐵} =
= 𝔼{(𝛼𝟙𝐵 + 𝛽𝟙𝐵𝑐)𝟙𝐵} =
= 𝛼𝔼{𝟙𝐵} + 𝛽𝔼{𝟙𝐵𝑐𝟙𝐵} =
= 𝛼ℙ(𝐵)

Hence, we obtain:
ℙ(𝐴 ∩ 𝐵) = 𝛼 ℙ(𝐵) ⟹ 𝛼 = ℙ(𝐴 ∩ 𝐵)

ℙ(𝐵)
Equivalently for ℙ(𝐴 ∩ 𝐵𝑐) it is possible to prove that:

ℙ(𝐴 ∩ 𝐵𝑐) = 𝛽 ℙ(𝐵𝑐) ⟹ 𝛽 = ℙ(𝐴 ∩ 𝐵𝑐)
ℙ(𝐵𝑐)

Finally it is possible to write the conditional probability in the general definition as a
linear combination of conditional probabilities defined accordingly to the elementary one,
i.e.

ℙ(𝐴|𝒢𝐵) = ℙ(𝐴|𝐵)𝟙𝐵 + ℙ(𝐴|𝐵𝑐)𝟙𝐵𝑐

Conditional probability

Example 6.1. Let’s continue from the example Example 2.1, let’s say that we observe
𝑋(𝜔) = {+1}, then we ask ourselves, what is the probability that in the next
extraction 𝑋(𝜔) = {0}? The chances that with 52 cards we obtain 𝑋(𝜔) = {0} is
approximately 3

13 ≈ 23.08% (see Example 3.1). Then, given the fact that the extracted
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card originates 𝑋(𝜔) = {+1} we have that the probability, conditional to the fact that
in the first extraction we had a card {+1}, that in the next extraction we have {0} is
12
51 = 23.52%. Let’s now investigate the chances that in the next extraction 𝑋(𝜔) = {+1}
given that in the previous was {+1}. The unconditional probability is 20

52 ≈ 38.46%, the
conditional probability will be 19

51 ≈ 37.25%.

Conditional probability: numerical example

Example 6.2. Let’s consider two random variables 𝑋(𝜔) and 𝑌 (𝜔) taking values in
{0, 1}. The marginal probabilities ℙ(𝑋 = 0) = 0.6 and ℙ(𝑌 = 0) = 0.29. Let’s consider
the matrix of joint events and probabilities, i.e.

([𝑋 = 0]∩[𝑌 = 0] [𝑋 = 0]∩[𝑌 = 1]
[𝑋 = 1]∩[𝑌 = 0] [𝑋 = 1]∩[𝑌 = 1])

ℙ⟶ (0.17 0.43
0.12 0.28)

Then, by definition the conditional probabilities are defined as:

ℙ(𝑋 = 0|𝑌 = 0) = ℙ(𝑋 = 0∩𝑌 = 0)
ℙ(𝑌 = 0) = 0.17

0.29 ≈ 58.63%

and
ℙ(𝑋 = 0|𝑌 = 1) = ℙ(𝑋 = 0∩𝑌 = 1)

ℙ(𝑌 = 1) = 0.43
1 − 0.29 ≈ 60.56%

Considering 𝑌 instead:

ℙ(𝑌 = 0|𝑋 = 0) = ℙ(𝑌 = 0∩𝑋 = 0)
ℙ(𝑋 = 0) = 0.17

0.6 ≈ 28.33%

and
ℙ(𝑌 = 0|𝑋 = 1) = ℙ(𝑌 = 0∩𝑋 = 1)

ℙ(𝑋 = 1) = 0.12
1 − 0.6 ≈ 30%

Then, it is possible to express the marginal probability of 𝑋 as:

ℙ(𝑋 = 0) = 𝔼{ℙ(𝑋 = 0|𝑌 )} =
= ℙ(𝑋 = 0|𝑌 = 0)ℙ(𝑌 = 0) + ℙ(𝑋 = 0|𝑌 = 1)ℙ(𝑌 = 1) =
= 0.5863 ⋅ 0.29 + 0.6056 ⋅ (1 − 0.29) ≈ 60%

And similarly for 𝑌

ℙ(𝑌 = 0) = 𝔼{ℙ(𝑌 = 0|𝑋)} =
= ℙ(𝑌 = 0|𝑋 = 0)ℙ(𝑋 = 0) + ℙ(𝑌 = 0|𝑋 = 1)ℙ(𝑋 = 1) =
= 0.2833 ⋅ 0.6 + 0.30 ⋅ (1 − 0.6) ≈ 29%
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7 Characteristic functions

Definition 7.1. (Characteristic function)
Consider an 𝑛-dimensional vector X, then the characteristic function is defined ∀𝑡 ∈ ℝ𝑛 as:

ΦX(t) = 𝔼{𝑒𝑖t𝑇 X} where t𝑇 X = (𝑡1, 𝑡2, … , 𝑡𝑛)
⎛⎜⎜⎜⎜
⎝

𝑋1
𝑋2
⋮

𝑋𝑛

⎞⎟⎟⎟⎟
⎠

The characteristic function always exists when treated as a function of a real-valued argument,
unlike the moment-generating function. The characteristic function uniquely determines the
probability distribution of the correspondent random vector X. More precisely, saying that
two random variables has the same distribution is equivalent to say that their characteristic
functions are equal. It follows that we can always work under characteristic functions to prove
that two distribution of some random vectors are equal or that a distribution converges to
another distribution. Formally X and Y ave same distribution, i.e.

X ∼ Y ⟺ ΦX(t) = ΦY(t) ∀t ∈ ℝ𝑛

Here, we list some properties considering the random variable case, i.e. 𝑛 = 1, with 𝑡 ∈ ℝ.

1. Independence: 𝑋 and 𝑌 are independent iff:

𝑋 ⟂ 𝑌 ⟺ Φ𝑋+𝑌 (𝑡) = Φ𝑋(𝑡)Φ𝑌 (𝑡) ∀𝑡 ∈ ℝ

2. Existence of the 𝑗-th moment: If the 𝑗-th moment of the random variable is finite then
the characteristic function is 𝑗-times differentiable and continuous in 0, i.e. Φ𝑋 ∈ ℂ(𝑗).
Formally,

𝔼{|𝑋|𝑟} < ∞ ⟹ Φ𝑋 ∈ ℂ(𝑟) and Φ(𝑟)
𝑋 (𝑡) = 𝔼{(𝑖X)𝑟𝑒𝑖𝑡𝑋} 𝑟 = 1, 2, … , 𝑗

Note that, if 𝑗 is even, it became an if:

𝔼{|𝑋|𝑟} < ∞ ⟹ Φ𝑋 ∈ ℂ(𝑟), Φ(𝑟)
𝑋 (𝑡) = 𝔼{(𝑖𝑋)𝑟𝑒𝑖𝑡𝑋} 𝑟 = 2, 4, … , 𝑗
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3. Inversion theorem: The characteristic function uniquely determines the probability
distribution of the correspondent random vector X:

𝔽(𝑏) − 𝔽(𝑎) = 1
2𝜋𝑖 lim

𝑐→∞
∫

𝑐

−𝑐

𝑒−𝑖𝑡𝑎 − 𝑒𝑖𝑡𝑏

𝑡 Φ(𝑡)𝑑𝑡 ∀𝑎 < 𝑏

Then, the density function is obtained as:

𝑓(𝑥) = 1
2𝜋 ∫

∞

−∞
𝑒−𝑖𝑡XΦX(𝑡)𝑑𝑡

4. Convergence in distribution:

𝑋𝑛
𝑑⟶

𝑛→∞
𝑋 ⟺ Φ𝑋(𝑡) = lim

𝑛→∞
Φ𝑋𝑛

(𝑡) ∀𝑡 ∈ ℝ

5. Scaling and centering: Given 𝑌 = 𝑎 + 𝑏𝑋, the effect of scaling and centering on the
characteristic function is such that:

Φ𝑌 (𝑡) = 𝔼{𝑒𝑖𝑡𝑌 } = 𝔼{𝑒𝑖𝑡(𝑎+𝑏𝑋)} = 𝑒𝑖𝑡𝑏𝔼{𝑒𝑖(𝑡𝑎)𝑋} = 𝑒𝑖𝑡𝑏Φ𝑋(𝑎𝑡) ∀𝑎, 𝑏, 𝑡 ∈ ℝ

6. Weak Law of Large Numbers: consider a sequence of IID random variables {𝑋𝑛}𝑛≥1,
such that exists the first derivative of the characteristic function in zero, namely ∃𝜙′

𝑋(0)
and the first moment of 𝑋1 is finite, i.e. 𝔼{|𝑋1|} = 𝜇 < ∞, then the sample mean
converges in probability to a degenerate random variable 𝛼 ∈ ℝ.

�̄�𝑛 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖
p

⟶
𝑛→∞

𝛼

for some 𝛼 ∈ ℝ.

WLLN and characteristic function

Proof. To prove the above statement, let’s compute the characteristic function of X̄𝑛:

𝜙X̄𝑛
(𝑡) = 𝔼{exp (𝑖𝑡

𝑛
𝑛

∑
𝑖=1

X𝑛) }IID= [𝜙X1
( 𝑡

𝑛)]
𝑛

Let’s now apply the Taylor series of a function 𝑓(𝑥) around the point 𝑎 (Equation 30.1)
to expand till the first order term the function 𝜙X1

( 𝑡
𝑛) around zero (𝑎 = 0 and 𝑥 = 𝑡

𝑛),
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i.e.
𝜙X̄𝑛

( 𝑡
𝑛) = (𝜙X1

(0) + 𝑡
𝑛𝜙′

X1
(0) + 𝑜( 𝑡

𝑛))
𝑛

=

= (1 +
𝑡𝜙′

X1
(0) + 𝑛𝑜( 𝑡

𝑛)
𝑛 )

𝑛

⟶
𝑛→∞

exp {𝑡𝜙′
X1

(0)}

The convergence going to the limit as 𝑛 → ∞ follows from the fact that in general if
𝑎𝑛 ⟶

𝑛→∞
𝑎, then the following limit holds:

(1 + 𝑎𝑛
𝑛 )

𝑛
⟶

𝑛→∞
𝑒𝑎

Therefore, since 𝜙′
X1

(0) = 𝑖𝛼 for some 𝛼 ∈ ℝ, it follows that:

lim
𝑛→∞

𝜙X̄𝑛
(𝑡) = 𝑒𝑡𝜙′

X1 (0) = 𝑒𝑖𝑡𝛼 ∀𝑡 ∈ ℝ

Hence, since 𝑒𝑖𝑡𝛼 is the characteristic function of a degenerate random variable, namely a
random variable that is constant almost surely, it is possible to conclude that the sample
mean converges in distribution to a degenerate random variable 𝛼. Moreover, in this
specific case in which the limit is a degenerate random variable it can be proved that
having convergence in distribution implies also convergence in probability, something that
in general is not true.

7.1 Moment generating function

Definition 7.2. (Moment Generating Function)
Consider an uni dimensional random variable X, then the moment generating function is
defined as:

𝜓X(𝑡) = 𝔼{𝑒𝑡X} ∀𝑡 ∈ ℝ − {0}

Proposition 7.1. (Moment generating function and sequence of moments)
Consider a random variable X, such that it’s moment generating function exists and it’s finite
around zero, i.e.

𝜓X(𝑡) = 𝔼{𝑒𝑡X} < ∞ 𝜖 > 0, ∀𝑡 ∈ (−𝜖, 𝜖)
Then this implies that the sequence of moments are finite 𝔼{|X|𝑛} < ∞ for all 𝑛 and the
sequence of moments uniquely determine the distribution of X. According to this result, if
we consider another random variable Y such that 𝔼{|X|𝑛} = 𝔼{|Y|𝑛} for all 𝑛, then the
distribution of X and Y is the same, i.e. X ∼ Y.
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8 Convergence concepts

Let’s consider a sequence of real number, say 𝑎𝑛, then stating that the associated series con-
verges, formally ∑∞

𝑘=1 𝛼𝑘 < ∞, implies that from a certain 𝑘 awards 𝑎𝑘 = 0, i.e.
∞

∑
𝑘=1

𝛼𝑘 < ∞ ⟺ lim
𝑁→∞

𝑁
∑
𝑘=𝑛

𝑎𝑘 = 0

8.1 Types of convergence

Definition 8.1. (Pointwise)
A sequence of random variables {𝑋𝑛}𝑛≥1 is said to be convergent point wise to a limit 𝑋 iff
for all 𝜔 ∈ Ω:

𝑋𝑛(𝜔) ⟶
𝑛→∞

𝑋(𝜔) ⟺ lim
𝑛→∞

𝑋𝑛(𝜔) = 𝑋(𝜔)
This kind of definition requires that convergence happen for every 𝜔 ∈ Ω.

Definition 8.2. (Almost Surely)
A sequence of random variables {𝑋𝑛}𝑛≥1 is said to be convergent almost surely to a limit
𝑋 iff:

ℙ{𝜔 ∈ Ω ∶ lim
𝑛→∞

𝑋𝑛(𝜔) = 𝑋(𝜔)} = 1
Usually, such kind of convergence is denoted as:

𝑋𝑛(𝜔) a.s.⟶
𝑛→∞

𝑋(𝜔)

In other terms, an almost surely convergence implies the relation must holds for all 𝜔 ∈ Ω
with the exception of some 𝜔’s, that are in Ω, but whose probability of occurrence is zero.

Definition 8.3. (In Probability)
A sequence of random variables {𝑋𝑛}𝑛≥1 is said to be convergent in probability to a limit
𝑋 if, for a fixed 𝜖 > 0:

lim
𝑛→∞

ℙ{𝜔 ∈ Ω ∶ |𝑋𝑛(𝜔) − 𝑋(𝜔)| > 𝜖} = 0

Usually, such kind of convergence is denoted as:

𝑋𝑛(𝜔)
p

⟶
𝑛→∞

𝑋(𝜔)
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Definition 8.4. (𝐿𝑝)
A sequence of events 𝑋𝑛 such that:

𝔼{|𝑋𝑛|𝑝} < ∞, 𝔼{|𝑋|𝑝} < ∞,

is said to be convergent in 𝐿𝑝, with 𝑝 > 0, to a random variable 𝑋 iff

𝑋𝑛(𝜔)
𝐿𝑝
⟶

𝑛→∞
𝑋(𝜔) ⟺ lim

𝑛→∞
𝔼{|𝑋𝑛 − 𝑋|𝑝} = 0

Usually, such kind of convergence is denoted as:

𝑋𝑛
𝐿𝑝
⟶

𝑛→∞
𝑋

Note that, it can be proved that there is no relation between almost sure convergence and 𝐿𝑝
convergence, i.e. one do not imply the other and viceversa. However, a convergence in a bigger
space, say 𝑞 > 𝑠 implies the convergence in the smaller space, i.e.

𝑋𝑛
𝐿𝑞
⟶

𝑛→∞
𝑋 ⟹ 𝑋𝑛

𝐿𝑝
⟶

𝑛→∞
𝑋, 0 < 𝑝 < 𝑞

Definition 8.5. (In Distribution)

A sequence of random variables 𝑋𝑛 is said to be convergent in distribution to a random
variable 𝑋 if the distribution of 𝔽𝑋𝑛

weakly converges to 𝔽𝑋 , i.e.

lim
𝑛→∞

𝔽𝑋𝑛
(𝑥) = 𝔽𝑋(𝑥) ∀𝑥

where 𝑥 is a continuity point of 𝔽. Usually, such kind of convergence is denoted as:

𝑋𝑛(𝜔) d⟶
𝑛→∞

𝑋(𝜔)

In other terms, we have convergence in distribution if the distribution of 𝑋𝑛, namely 𝔽𝑋𝑛
,

converges as 𝑛 → ∞ to the distribution of 𝑋, namely 𝔽𝑋. Note that the convergence in
distribution is not related with probability space but involves only the distribution functions.

8.2 Laws of Large Numbers

There are many versions of laws of large numbers (LLN). In general, a sequence {𝑋𝑛}𝑛≥1 is
said to satisfy a LLN iff:

�̄�𝑛 = 𝑆𝑛
𝑛 = 1

𝑛
𝑛

∑
𝑖=1

𝑋𝑖 ⟶ 𝑋
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Strong vs weak laws of large numbers

In general, if convergence happens almost surely (Definition 8.2) we speak about strong
laws of large numbers (SLLN). Otherwise, if convergence happens in probability we
speak about weak laws of large numbers (WLLN). A crucial difference to be noted is
that when convergence happens almost surely we are dealing with a limit of a sequence
of sets (limit is inside ℙ), instead if convergence happens in probability we are dealing
with a limit of a sequence of real numbers in [0, 1] (limit is outside ℙ).

8.2.1 Strong Laws of Large Numbers

Definition 8.6. (Kolmogorov SLLN)
Let’s consider a sequence of IID random variables {𝑋𝑛}𝑛≥1. Then, there exist a constant 𝑐 ∈ ℝ
such that:

�̄�𝑛 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖 = 𝑆𝑛
𝑛

a.s.⟶
𝑛→∞

𝑐

Then, if 𝔼{|𝑋1|} < ∞ in which case 𝑐 = 𝔼{|𝑋1|}.

Definition 8.7. (SLLN without independence)
Let’s consider a sequence of identically distributed random variables {𝑋𝑛}𝑛≥1, i.e. 𝔼{𝑋𝑛} =
𝔼{𝑋1} for all 𝑛, such that:

1. 𝔼{𝑋2} < 𝑐 where 𝑐 > 0 is a constant independent from 𝑛.
2. ℂ𝑣{𝑋𝑖, 𝑋𝑗} = 0 ∀𝑖 ≠ 𝑗.

�̄�𝑛 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖 = 𝑆𝑛
𝑛

a.s.⟶
𝑛→∞

𝔼{𝑋1}

Note that the existence of the first moment and the fact that it is finite, i.e. 𝔼{𝑋1} < ∞, implies
that there exists the characteristic function of the random variable in zero, i.e. ∃𝜙′

𝑋1
(0). On

the other hand, the existence of the characteristic function in zero do not ensure that the first
moment is finite.

8.2.2 Weak Laws of Large Numbers

Let’s repeat a random experiment many times, every time ensuring the same conditions in such
a way that the sequence of the experiment are IID. Then, each random variable 𝑋𝑖 comes from
the same population with a unknown mean 𝔼{𝑋} and variance 𝕍{𝑋}. Thanks to the WLLN
and repeating the experiment many times we have that the sample mean of the experiment
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converges in probability to the true mean in population. Convergence in probability means
that:

lim
𝑛→∞

ℙ {𝜔 ∈ Ω ∶ ∣ 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖(𝜔) − 𝔼{𝑋(𝜔)}∣ > 𝜖} = 0

Definition 8.8. (WLLN with variances)
Given a sequence of independent and identically distributed random variables {𝑋𝑛}𝑛≥1
such that:

1. 𝔼{𝑋1} = 𝜇.
2. 𝔼{𝑋2

1} < ∞.

�̄�𝑛 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖 = 𝑆𝑛
𝑛

p
⟶

𝑛→∞
𝔼{𝑋1} = 𝜇

Proof WLLN with variances

Proof. Let’s consider the random variable �̄�𝑛 = 1
𝑛 ∑𝑛

𝑖=1 𝑋𝑖, then since by assumption
the mean and variance are finite, let’s apply the Chebychev inequality (Equation 5.5),
i.e.

ℙ(|�̄�𝑛 − 𝜇| ≥ 𝜆) ≤ 1
𝜆2 𝕍{�̄�𝑛 − 𝜇}

Using a well known scaling property of variance let’s simplify it as:

𝕍{�̄�𝑛 − 𝜇} = 𝕍 { 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖 − 𝜇} = (Constant)

= 𝕍 { 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖} = (Scaling)

= 1
𝑛2 𝕍 {

𝑛
∑
𝑖=1

𝑋𝑖} = (Independence)

= 1
𝑛2

𝑛
∑
𝑖=1

𝕍{𝑋𝑖} = (Identically distribution)

= 𝑛𝜎2

𝑛2 = 𝜎2

𝑛
Therefore the Chebychev inequality became

ℙ(|�̄�𝑛 − 𝜇| ≥ 𝜆) ≤ 𝜎2

𝑛𝜆2
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Taking the limit as 𝑛 → ∞ proves the convergence in probability, i.e.

lim
𝑛→∞

ℙ(|�̄�𝑛 − 𝜇| ≥ 𝜆) ≤ lim
𝑛→∞

𝜎2

𝑛𝜆2 = 0

Definition 8.9. (Khintchin’s WLLN under first moment hypothesis)
Given a sequence of independent and identically distributed random variables {𝑋𝑛}𝑛≥1
such that:

1. 𝔼{𝑋1} < ∞.
2. 𝔼{𝑋𝑛} = 𝜇.

�̄�𝑛 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖 = 𝑆𝑛
𝑛

p
⟶

𝑛→∞
𝔼{𝑋1} = 𝜇

Definition 8.10. (Feller’s WLLN without first moment)
Given a sequence of independent and identically distributed random variables {𝑋𝑛}𝑛≥1
such that:

lim
𝑥→∞

𝑥ℙ{|𝑋1| > 𝑥} = 0

then
�̄�𝑛 = 1

𝑛
𝑛

∑
𝑖=1

𝑋𝑖 = 𝑆𝑛
𝑛

p
⟶

𝑛→∞
𝔼{𝑋1𝟙[|𝑋1|≤𝑛]}

Note that this result makes not assumptions about a finite first moment.

SLLN (without independence) implies WLLN

Let’s verity that under the assumptions of the SLLN without independence (Defini-
tion 8.7) we will always have convergence in probability, i.e.

�̄�𝑛 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖
p

⟶
𝑛→∞

𝔼{𝑋1}

Proof. Using Chebychev inequality (Equation 5.5), fix an 𝜀 > 0 such that:

ℙ(|�̄�𝑛 − 𝔼{𝑋1}| > 𝜀) ≤ 𝕍{�̄�𝑛}
𝜀2
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Let’s explicit the computations, i.e.

𝕍{�̄�𝑛}
𝜀2 = 1

𝑛2𝜀2 𝕍 {
𝑛

∑
𝑖=1

𝑋𝑖} =

= 1
𝑛2𝜀2 [

𝑛
∑
𝑖=1

𝕍{𝑋𝑖} +
𝑛

∑
𝑖=1

𝑛
∑
𝑗≠𝑖

ℂ𝑣{𝑋𝑖, 𝑋𝑗}]

By assumption the covariances are zero ℂ𝑣{𝑋𝑖, 𝑋𝑗} = 0∀𝑖 ≠ 𝑗. Moreover, since 𝕍{𝑋𝑖} =
𝔼{𝑋2

𝑖 } − 𝔼{𝑋𝑖}2 it is possible to upper bound the variance with the second moment,
namely 𝕍{𝑋𝑖} ≤ 𝔼{𝑋2

𝑖 }, i.e.

1
𝑛2𝜀2

𝑛
∑
𝑖=1

𝕍{𝑋𝑖} ≤ 1
𝑛2𝜀2

𝑛
∑
𝑖=1

𝔼{𝑋2
𝑖 }

Since by the assumption of the SLLN we have that 𝔼{𝑋2} < 𝑐 where 𝑐 > 0 is a constant
independent from 𝑛 we can further upper bound the probability by:

1
𝑛2𝜀2

𝑛
∑
𝑖=1

𝔼{𝑋2
𝑖 } ≤ 1

𝑛2𝜀2

𝑛
∑
𝑖=1

𝑐 = 𝑛𝑐
𝑛2𝜀2 = 𝑐

𝑛𝜀2

Finally if we take the limit for 𝑛 → ∞ it is equal to zero implying convergence in
probability:

0 ≤ lim
𝑛→∞

ℙ(|�̄�𝑛 − 𝔼{𝑋1}| > 𝜀) ≤ lim
𝑛→∞

𝑐
𝑛𝜀2 = 0

8.3 Central Limit Theorem

Theorem 8.1. (Central Limit Theorem (CLT) - IID case)
Let’s consider a sequence of 𝑛 random variables, 𝑋𝑛 = (𝑋1, … , 𝑋𝑛), where each 𝑋𝑖 is inde-
pendent and identically distributed (IID), i.e.

𝑋𝑖 ∼ IID(𝜇, 𝜎2) ⟹ 𝔼{𝑋𝑖} = 𝔼{𝑋1} = 𝜇
⟹ 𝕍{𝑋𝑖} = 𝕍{𝑋1} = 𝜎2

Then, let’s define a random variable, namely 𝑆𝑛, given by the sum of all the 𝑋𝑖, i.e.

𝑆𝑛 =
𝑛

∑
𝑖=1

𝑋𝑖
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It is easy to see that due to the fact that the random variables are IID the moments of 𝑆𝑛 are:

𝔼{𝑆𝑛} = 𝑛𝔼{𝑋1} = 𝑛𝜇, 𝕍{𝑆𝑛} = 𝑛𝕍{𝑋1} = 𝑛𝜎2

Hence, the standardized variable 𝑍𝑛 on large samples is normally distributed, i.e.

𝑍𝑛 = 𝑆𝑛 − 𝔼{𝑆𝑛}
√𝕍{𝑆𝑛}

= ∑𝑛
𝑖=1 𝑋𝑖 − 𝑛𝜇√𝑛 𝜎

𝑑∼
𝑛→∞

𝒩(0, 1)
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Part II

Statistics
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9 Population, sample and moments

A population refers to the entire group of individuals or instances about whom we hope to
learn. It encompasses all possible subjects or observations that meet a set of criteria. The
population is the complete set of items that interest the researcher, and it can be finite (e.g. the
students in a particular school) or infinite (e.g. the number of times a die can be rolled). A
population size is given by the number of distinct elements and it includes every individual
or observation of interest.

A sample is a subset of the population that is used to represent the population. Since studying
an entire population is often impractical due to constraints like time, cost, and accessibility,
samples provide a manageable and efficient way to gather data and make inferences about the
population. It is important that the sample is representative of the population of interest to
allow for valid inferences. It is always important to distinguish between a random sample,
e.g. a random group of students in 5th year from a school to make inference about the students
at the 5th year of such school, and a convenience sample, e.g. a class of 5th year students
who are easily accessible to the researcher, but that can be not representative of all the 5th
year students in the school.

Aspect Population Sample
Definition Entire group of interest Subset of the population
Size Large, potentially infinite Small, manageable
Data
Collection

Often impractical to study directly Practical and feasible

Purpose To understand the whole group To make inferences about the
population

9.1 Expectation

The expectation of a random variable 𝑋 is it’s first moment, also called statistical average. In
general, it is denoted as 𝔼{𝑋}. Let’s consider a discrete random variable 𝑋 with distribution
function 𝑃(𝑋 = 𝑥𝑗) = 𝑝𝑗. Then the expectation of 𝑋 is the weighted average between all
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Figure 9.1: Population vs sample.

the possible 𝑚-states that the random variable can assume by it’s respective probability of
occurrence, i.e.

𝔼{𝑋} =
𝑚

∑
𝑗=1

𝑥𝑗𝑝𝑗.

In the continuous case, i.e. when 𝑋 takes values in ℝ and admits a density function, the
expectation is computed as an integral, i.e.

𝔼{𝑋} = ∫
∞

−∞
𝑥𝑑𝐹𝑋(𝑥) = ∫

∞

−∞
𝑥𝑓𝑋(𝑥)𝑑𝑥.

9.1.1 Sample statistic

Let’s consider a sample of IID observations, i.e. 𝑋𝑛 = (𝑥1, … , 𝑥𝑖, … , 𝑥𝑛). Then the sample
expectation is computed as:

̂𝜇(𝑋𝑛) = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖.

Population vs sample

In general, the notation 𝑋𝑛 refers to a finite sample, e.g. ̂𝜇(𝑋𝑛) is the sample mean.
Instead the notation without 𝑛, i.e. 𝑋, stands for the random variable in population,
e.g. 𝔼{𝑋} is the mean in population. A population can be finite or non-finite. In the
case of a finite population with 𝑁 element it is useful to distinguish between:
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• Extraction with reimmission of 𝑛 elements for the sample gives 𝑁𝑛 possible
combinations.

• Extraction without readmission of 𝑛 elements for the sample gives (𝑁
𝑛) possible

combinations.

Table 9.2: Expectation in a discrete and continuous population and in a sample 𝑋𝑛.

Population (continuous) Population (discrete) Sample

∫∞
−∞ 𝑥𝑓(𝑥)𝑑𝑥 ∑𝑚

𝑗=1 𝑥𝑗𝑝𝑗
1
𝑛 ∑𝑛

𝑖=1 𝑥𝑖

9.1.2 Sample moments

Let’s consider an the moments of the sample mean of an IID sample. Since all the variables
has the same expected value, i.e. 𝔼{𝑥𝑖} = 𝔼{𝑋}, the expected value of the sample mean is
computed as:

𝔼 { ̂𝜇(𝑋𝑛)} = 1
𝑛

𝑛
∑
𝑖=1

𝔼{𝑥𝑖} = 𝔼{𝑋}. (9.1)

The variance of the sample mean is computed as:

𝕍 { ̂𝜇(𝑋𝑛)} = 1
𝑛2 𝕍 {

𝑛
∑
𝑖=1

𝑥𝑖} =

= 1
𝑛2

𝑛
∑
𝑖=1

𝕍 {𝑥𝑖} = 𝕍{𝑋}
𝑛

(9.2)

9.1.3 Sample distribution

Proposition 9.1. Let’s consider a sample 𝑋𝑛 of 𝑛 IID random variables. If 𝑛 is sufficiently
large, independently from the distribution of the 𝑋, by the central limit theorem (CLT) the
distribution of the sample expectation converges to the distribution of a normal random variable,
i.e.

̂𝜇(𝑋𝑛) 𝑑⟶
𝑛→∞

𝒩 (𝔼{𝑋}, 𝕍{𝑋}
𝑛 ) .

Proof: Distribution of sample expectation (Proposition 9.1)

Proof. In order to prove Proposition 9.1 it is useful to compute the expectation and the
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variance of the following random variable, i.e.

𝑆𝑛 =
𝑛

∑
𝑖=1

𝑥𝑖.

The expectation and the variance of 𝑆𝑛 can be easily obtained from Equation 9.1 and
Equation 9.2 respectively and read:

𝔼 {𝑆𝑛} = 𝑛 ⋅ 𝔼{𝑋} 𝕍 {𝑆𝑛} = 𝑛 ⋅ 𝕍{𝑋}

Applying the central limit theorem (Theorem 8.1) one obtain:

𝑆𝑛 − 𝑛 ⋅ 𝔼{𝑋}√𝑛 ⋅ 𝕊𝑑{𝑋} =
𝑆𝑛
𝑛 − 𝔼{𝑋}

𝕊𝑑{𝑋}√𝑛
∼ 𝑁(0, 1).

Hence the random variable mean ̂𝜇(𝑋𝑛) = 𝑆𝑛
𝑛 on large samples is distributed as a normal

random variable, i.e.

̂𝜇(𝑋𝑛) = 𝑆𝑛
𝑛 = 1

𝑛
𝑛

∑
𝑖=1

𝑥𝑖
𝑑⟶

𝑛→∞
𝒩 (𝔼{𝑋}, 𝕍{𝑋}

𝑛 ) .

Note that on small sample this results holds true if and only if 𝑋 is normally distributed
also in population. Under normality also in population we have that independently from
the sample size:

𝑋𝑖 ∼ 𝒩(𝔼{𝑋}, 𝕍{𝑋}), ∀𝑖 ⟹ ̂𝜇(𝑋𝑛) ∼ 𝒩 (𝔼{𝑋}, 𝕍{𝑋}
𝑛 ) .
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Figure 9.2: Distribution of the sample mean.
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9.2 Variance and covariance

In general the variance of a random variable in population defined as:

𝕍{𝑋} = 𝔼{(𝑋 − 𝔼{𝑋})2}.

Let’s consider a discrete random variable 𝑋 with distribution function 𝑃(𝑋 = 𝑥𝑗) = 𝑝𝑗. Then
the variance of 𝑋 is the weighted average between all the possible 𝑚-centered and squared
states that the random variable can assume by it’s respective probability of occurrence, i.e.

𝕍{𝑋} =
𝑚

∑
𝑗=1

(𝑥𝑗 − 𝔼{𝑋})2𝑝𝑗.

In the continuous case, i.e. when 𝑋 admits a density function and takes values in ℝ, the
expectation is computed as:

𝕍{𝑋} = ∫
∞

−∞
(𝑥 − 𝔼{𝑋})2𝑓𝑋(𝑥)𝑑𝑥.

Let’s consider two random variables 𝑋 and 𝑌 . Then, in general their covariance is defined
as:

ℂ𝑣{𝑋, 𝑌 } = 𝔼{(𝑋 − 𝔼{𝑋}) (𝑌 − 𝔼{𝑌 })}.

In the discrete case where 𝑋 and 𝑌 have a joint distribution ℙ(𝑋 = 𝑥𝑖, 𝑌 = 𝑦𝑗) = 𝑝𝑖𝑗, their
covariance is defined as:

ℂ𝑣{𝑋, 𝑌 } =
𝑚

∑
𝑖=1

𝑠
∑
𝑗=1

(𝑥𝑖 − 𝔼{𝑋}) (𝑦𝑗 − 𝔼{𝑌 }) 𝑝𝑖𝑗.

In the continuous case, if the joint distribution of 𝑋 and 𝑌 admits a density function the
covariance is computed as:

ℂ𝑣{𝑋, 𝑌 } = ∫
∞

−∞
∫

∞

−∞
(𝑥 − 𝔼{𝑋})(𝑦 − 𝔼{𝑌 })𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝑥𝑑𝑦.

9.2.1 Properties

There are several properties connected to the variance.

1. The variance can be computed as:

𝕍{𝑋} = 𝔼{𝑋2} − 𝔼{𝑋}2. (9.3)

2. The variance is invariant with respect to the addition of a constant 𝑎, i.e.

𝕍{𝑎 + 𝑋} = 𝕍{𝑋}. (9.4)
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3. The variance scales upon multiplication with a constant 𝑎, i.e.

𝕍{𝑎𝑋} = 𝑎2𝕍{𝑋}. (9.5)

4. The variance of the sum is computed as:

𝕍{𝑋 + 𝑌 } = 𝕍{𝑋} + 𝕍{𝑌 } + 2ℂ𝑣{𝑋, 𝑌 }. (9.6)

5. The covariance can be expressed as:

ℂ𝑣{𝑋, 𝑌 } = 𝔼{𝑋𝑌 } − 𝔼{𝑋}𝔼{𝑌 }. (9.7)
6. The covariance scales upon multiplication with a constant 𝑎 and 𝑏, i.e.

ℂ𝑣{𝑎𝑋, 𝑏𝑌 } = 𝑎𝑏ℂ{𝑋, 𝑌 }. (9.8)

Proof: Properties of the variance

Proof. The property 1. (Equation 9.3) follows easily developing the definition of variance,
i.e.

𝕍{𝑋} = 𝔼{(𝑋 − 𝔼{𝑋})2} =
= 𝔼{𝑋2} + 𝔼{𝑋}2 − 2𝔼{𝑋}2 =
= 𝔼{𝑋2} − 𝔼{𝑋}2

The property 2. (Equation 9.4) follows from the definition, i.e.

𝕍{𝑎 + 𝑋} = 𝔼{(𝑎 + 𝑋 − 𝔼{𝑎 + 𝑋})2} =
= 𝔼{(𝑋 − 𝔼{𝑋})2} =
= 𝕍{𝑋}

The property 3. (Equation 9.5) follows using the expression of the variance in Equa-
tion 9.3, i.e.

𝕍{𝑎𝑋} = 𝔼{(𝑎𝑋)2} − 𝔼{𝑎𝑋}2 =
= 𝑎2𝔼{𝑋2} − 𝑎2𝔼{𝑋}2 =
= 𝑎2(𝔼{𝑋2} − 𝔼{𝑋}2) =
= 𝑎2𝕍{𝑋}

The property 4. (Equation 9.6), i.e. the variance of the sum of two random variables is:

𝕍{𝑋 + 𝑌 } = 𝔼{(𝑋 + 𝑌 − 𝔼{𝑋 + 𝑌 })2} =
= 𝔼{([𝑋 − 𝔼{𝑋}] + [𝑌 − 𝔼{𝑌 }])2} =
= 𝔼{(𝑋 − 𝔼{𝑋})2} + 𝔼{(𝑌 − 𝔼{𝑌 })2} + 2𝔼{(𝑋 − 𝔼{𝑋})(𝑌 − 𝔼{𝑌 })} =
= 𝕍{𝑋} + 𝕍{𝑌 } + 2ℂ𝑣{𝑋, 𝑌 }

where in the case in which there is no linear connection between 𝑋 and 𝑌 the covariance
is zero, i.e. ℂ𝑣{𝑋, 𝑌 } = 0. Developing the computation of the covariance it is possible
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to prove property 5. (Equation 9.7), i.e.

ℂ𝑣{𝑋, 𝑌 } = 𝔼{(𝑋 − 𝔼{𝑋}) (𝑌 − 𝔼{𝑌 })} =
= 𝔼{𝑋𝑌 − 𝑋𝔼{𝑌 } − 𝑌 𝔼{𝑋} + 𝔼{𝑋}𝔼{𝑌 }} =
= 𝔼{𝑋𝑌 } − 2𝔼{𝑋}𝔼{𝑌 } + 𝔼{𝑋}𝔼{𝑌 } =
= 𝔼{𝑋𝑌 } − 𝔼{𝑋}𝔼{𝑌 }

Finally, using the result in property 5. (Equation 9.7) the result in property 6. (Equa-
tion 9.8) follows easily:

ℂ𝑣{𝑎𝑋, 𝑏𝑌 } = 𝔼{𝑎𝑋𝑏𝑌 } − 𝔼{𝑎𝑋}𝔼{𝑏𝑌 } =
= 𝑎𝑏𝔼{𝑋𝑌 } − 𝑎𝑏𝔼{𝑋}𝔼{𝑌 } =
= 𝑎𝑏ℂ𝑣{𝑋, 𝑌 }

9.2.2 Sample statistic

The sample’s variance on 𝑋𝑛 = (𝑥1, … , 𝑥𝑖, … , 𝑥𝑛) is computed as:

𝕍{𝑋𝑛} = �̂�2(𝑋𝑛) = 1
𝑛

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝔼{𝑋𝑛})2 . (9.9)

Equivalently, in terms of the first and second moment:

�̂�2(𝑋𝑛) = 1
𝑛

𝑛
∑
𝑖=1

𝑥2
𝑖 − ( 1

𝑛
𝑛

∑
𝑖=1

𝑥𝑖)
2

. (9.10)

In general, the variance computed as in Equation 9.9 is not correct for the population value.
Hence, to correct the estimator let’s define the corrected sample’s variance:

̂𝑠2(𝑋𝑛) = 𝑛
𝑛 − 1�̂�2(𝑋𝑛). (9.11)

9.2.3 Sample moments

Let’s consider an the moments of the sample variance on an IID sample. The expected value
of the corrected sample variance:

𝔼 { ̂𝑠2(𝑋𝑛)} = 𝜎2. (9.12)
The variance of the corrected sample variance is:

𝕍 { ̂𝑠2(𝑋𝑛)} = 𝜎4

𝑛 ((𝜇4
𝜎4 − 3) + 2 𝑛

𝑛 − 1) , (9.13)
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where 𝜇4
𝜎4 is the kurtosis of 𝑋𝑛. If the population is normal, 𝜇4

𝜎4 = 3 and the variance simplifies
in:

𝕍 { ̂𝑠2(𝑋𝑛)} = 2𝜎4

𝑛 − 1 . (9.14)

9.2.4 Sample distribution

The distribution of the sample variance is available when we consider the sum of n-IID
standard normal random variables. Notably, from Cochran’s theorem:

𝑇𝑛 = (𝑛 − 1) ̂𝑠2(𝑋𝑛)
𝜎2 ∼ 𝜒2(𝑛 − 1) (9.15)

Going to the limit as 𝜈 → ∞ a 𝜒2
𝜈 random variable converges to a standard normal random

variable, i.e.
𝜒2(𝑛) − 𝑛√

2𝑛
𝑑⟶

𝑛→∞
𝒩(0, 1)

therefore, on large samples the statistic 𝑇𝑛 converges to a normal random variable, i.e.

𝑇𝑛
𝑑⟶

𝑛→∞
𝒩(𝑛, 2𝑛) ⟺ 𝑇𝑛 − 𝑛√

2𝑛 ∼ 𝒩(0, 1) (9.16)

Distribution of ̂𝑠2(𝑋𝑛) under normality.

If the population 𝑋𝑛 is normal, then the distribution of ̂𝑠2(𝑋𝑛) is proportional to the
distribution of a 𝜒2

𝑛−1. In fact, from Equation 9.15 the expectation of ̂𝑠2(𝑋𝑛) is:

𝔼{𝑇𝑛} = (𝑛 − 1)𝔼{ ̂𝑠2(𝑋𝑛)}
𝜎2

⟹ 𝔼{ ̂𝑠2(𝑋𝑛)} = 𝜎2𝔼{𝑇𝑛}
𝑛 − 1 = 𝜎2(𝑛 − 1)

𝑛 − 1
⟹ 𝔼{ ̂𝑠2(𝑋𝑛)} = 𝜎2

Similarly, computing the variance of Equation 9.15 and knowing that 𝕍{𝑇𝑛} = 2(𝑛 − 1)
one obtain:

𝕍{𝑇𝑛} = (𝑛 − 1)2 𝕍{ ̂𝑠2(𝑋𝑛)}
𝜎4

⟹ 𝕍{ ̂𝑠2(𝑋𝑛)} = 𝜎4𝕍{𝑇𝑛}
(𝑛 − 1)2 = 𝜎42(𝑛 − 1)

(𝑛 − 1)2

⟹ 𝕍{ ̂𝑠2(𝑋𝑛)} = 2𝜎4

𝑛 − 1
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Figure 9.3: Distribution of the statistic 𝑇𝑛 under normality.

9.3 Skewness

The skewness is a measure of the asymmetry of the probability distribution of a real-valued
random variable about its mean. The skewness value can be positive, zero, negative, or
undefined. For a uni modal distribution, negative skew commonly indicates that the tail is on
the left side of the distribution, and positive skew indicates that the tail is on the right.
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Figure 9.4: Skewness of a random variable.

Following the same notation as in Ralph B. D’agostino and Jr. (1990), let’s define and denote
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the population skewness of a random variable 𝑋 as:

𝕊𝑘{𝑋} = 𝛽1(𝑋) = 𝔼
⎧{
⎨{⎩

(𝑋 − 𝔼{𝑋}
√𝕍{𝑋}

)
3⎫}
⎬}⎭

,

9.3.1 Sample statistic

Let’s consider an IID sample 𝑋𝑛 = (𝑥1, … , 𝑥𝑖, … , 𝑥𝑛), then the sample’s skewness is esti-
mated as:

𝕊𝑘{𝑋𝑛} = 𝑏1(𝑋𝑛) = 1
𝑛

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝔼{𝑋𝑛}
√𝕍{𝑋𝑛}

)
3

. (9.17)

The estimator in Equation 9.17 is not correct. Hence, let’s define the correct sample esti-
mator of the skewness as:

𝑔1(𝑋𝑛) = √𝑛(𝑛 − 1)
(𝑛 − 2) 𝑏1(𝑋𝑛).

9.3.2 Sample moments

Under normality, the asymptotic moments of the sample skewness are:

𝔼{𝑏1(𝑋𝑛)} = 0, 𝕍{𝑏1(𝑋𝑛)} = 6
𝑛 .

In Urzúa (1996) are also reported the exact mean of the estimator in Equation 9.17 for small
normal samples, i.e.

𝔼{𝑏1(𝑋𝑛)} = 0,

and variance
𝕍{𝑏1(𝑋𝑛)} = 6(𝑛 − 2)

(𝑛 + 1)(𝑛 + 3) . (9.18)

9.3.3 Sample distribution

Under normality, the asymptotic distribution of the sample skewness is normal i.e.

𝑏1(𝑋𝑛) 𝑑⟶
𝑛→∞

𝒩 (0, 6
𝑛) . (9.19)
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9.4 Kurtosis

The kurtosis is a measure of the tailedness of the probability distribution of a real-valued
random variable. The standard measure of a distribution’s kurtosis, originating with Karl
Pearson is a scaled version of the fourth moment of the distribution. This number is related
to the tails of the distribution. For this measure, higher kurtosis corresponds to greater
extremity of deviations from the mean (or outliers). In general, it is common to compare the
excess kurtosis of a distribution with respect to the normal distribution (with kurtosis equal
to 3). It is possible to distinguish 3 cases:

1. A negative excess kurtosis or platykurtic are distributions that produces less outliers
than the normal. distribution.

2. A zero excess kurtosis or mesokurtic are distributions that produces same outliers
than the normal.

3. A positive excess kurtosis or leptokurtic are distributions that produces more out-
liers than the normal.
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Figure 9.5: Kurtosis of a different leptokurtic distributions.

Let’s define and denote the population kurtosis of a random variable 𝑋 as:

𝕂𝑡{𝑋} = 𝛽2(𝑋) = 𝔼
⎧{
⎨{⎩

(𝑋 − 𝔼{𝑋}
√𝕍{𝑋}

)
4⎫}
⎬}⎭

,

or equivalently the excess kurtosis as 𝕂𝑡{𝑋} − 3.
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9.4.1 Sample statistic

Let’s consider an IID sample 𝑋𝑛 = (𝑥1, … , 𝑥𝑖, … , 𝑥𝑛), then the sample’s kurtosis is denoted
as:

𝕂𝑡{𝑋𝑛} = 𝑏2(𝑋𝑛) = 1
𝑛

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝔼{𝑋𝑛}
√𝕍{𝑋𝑛}

)
4

. (9.20)

From Pearson (1931), we have a correct the version of 𝑏1(𝑋𝑛) defined as:

𝑔2(𝑋𝑛) = [𝑏2(𝑋𝑛) − 3(𝑛 + 1)
𝑛 + 1 ] (𝑛 + 1)(𝑛 − 1)

(𝑛 − 2)(𝑛 − 3) .

9.4.2 Sample moments

Under normality, the asymptotic moments of the sample kurtosis are:

𝔼{𝑏2(𝑋𝑛)} = 3, 𝕍{𝑏2(𝑋𝑛)} = 24
𝑛 .

Notably in Urzúa (1996) are reported also the exact mean and variance for a small normal
sample, i.e.

𝔼{𝑏2(𝑋𝑛)} = 3(𝑛 − 1)
(𝑛 + 1) , (9.21)

and the variance as:
𝕍{𝑏2(𝑋𝑛)} = 24𝑛(𝑛 − 2)(𝑛 − 3)

(𝑛 + 1)2(𝑛 + 3)(𝑛 + 5) . (9.22)

9.4.3 Sample distribution

Under normality, the asymptotic distribution of the sample kurtosis is normal, i.e.

𝑏2(𝑋𝑛) 𝑑⟶
𝑛→∞

𝒩 (3, 24
𝑛 ) . (9.23)
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10 Likelihood

In general, we define the likelihood of a sample 𝑋1 … 𝑋𝑛 their joint density, function of a
general parameter 𝜃 and denoted as

ℒ(𝜃) = ℒ(𝜃 ∣ 𝑋𝑛) = ℒ(𝜃 ∣ 𝑥1, … , 𝑥𝑛) = 𝑓𝑋(𝑥1, … , 𝑥𝑛 ∣ 𝜃)

For a given value of the parameter 𝜃, the likelihood tells us how likely it is that the data are
generated under the distributive law implied by 𝑓𝑋.

10.1 Maximum likelihood estimators

In statistics, thw maximum likelihood estimation (MLE) is a method of estimating the pa-
rameters of an assumed probability distribution, given some observed data. This is achieved
by maximizing a likelihood function so that, under the assumed statistical model, the ob-
served data is most probable. For example, let’s consider a generic sample 𝑋𝑛 = (𝑥1, … , 𝑥𝑛)
drown from a parametric distribution with unknown parameters 𝜃. Then, given the likelihood
function, if the observations are independent and identically distributed, then the following
factorization of the joint density holds true, i.e.

ℒ(𝜃 ∣ 𝑋𝑛) = 𝑓𝑋(𝑥1, … , 𝑥𝑛 ∣ 𝜃) =
= 𝑓𝑋(𝑥1 ∣ 𝜃) … 𝑓𝑋(𝑥𝑛 ∣ 𝜃) =

=
𝑛

∏
𝑖=1

𝑓𝑋(𝑥𝑖 ∣ 𝜃)

Then, the log-likelihood function is computed taking the logarithm of the likelihood, i.e.

ℓ(𝜃 ∣ 𝑋𝑛) = log ℒ(𝜃 ∣ 𝑋𝑛) =
𝑛

∑
𝑖=1

log 𝑓𝑋(𝑥𝑖 ∣ 𝜃)

If the likelihood function is differentiable, the derivative test for finding maxima can be applied.
Since the logarithm is a monotonic function, the maximum of ℓ(𝜃 ∣ 𝑋𝑛) occurs at the same value
of ℒ(𝜃 ∣ 𝑋𝑛). Considering a vector of 𝑘-parameters the first order conditions(FOC) and if
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the log-likelihood function is is differentiable in 𝜃, a sufficient conditions for the occurrence of
a maximum (or a minimum) are

⎧{{
⎨{{⎩

𝜕𝜃1
ℓ(𝜃 ∣ 𝑋𝑛) = 0

𝜕𝜃2
ℓ(𝜃 ∣ 𝑋𝑛) = 0

⋮
𝜕𝜃𝑘

ℓ(𝜃 ∣ 𝑋𝑛) = 0

Whether the identified the optimal solution ̂𝜃 of the likelihood equations is indeed a (local)
maximum depends on whether the matrix of second-order partial and cross-partial derivatives,
the so-called Hessian matrix, i.e.

ℋ( ̂𝜃) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜕𝜃1
𝜕𝜃1

ℓ(𝜃 ∣ 𝑋𝑛) ∣
𝜃= ̂𝜃

𝜕𝜃1
𝜕𝜃2

ℓ(𝜃 ∣ 𝑋𝑛) ∣
𝜃= ̂𝜃

… 𝜕𝜃1
𝜕𝜃𝑘

ℓ(𝜃 ∣ 𝑋𝑛) ∣
𝜃= ̂𝜃

𝜕𝜃2
𝜕𝜃1

ℓ(𝜃 ∣ 𝑋𝑛) ∣
𝜃= ̂𝜃

𝜕𝜃2
𝜕𝜃2

ℓ(𝜃 ∣ 𝑋𝑛) ∣
𝜃= ̂𝜃

… 𝜕𝜃2
𝜕𝜃𝑘

ℓ(𝜃 ∣ 𝑋𝑛) ∣
𝜃= ̂𝜃

⋮ ⋮ ⋱ ⋮
𝜕𝜃𝑘

𝜕𝜃1
ℓ(𝜃 ∣ 𝑋𝑛) ∣

𝜃= ̂𝜃
𝜕𝜃𝑘

𝜕𝜃2
ℓ(𝜃 ∣ 𝑋𝑛) ∣

𝜃= ̂𝜃
… 𝜕𝜃𝑘

𝜕𝜃𝑘
ℓ(𝜃 ∣ 𝑋𝑛) ∣

𝜃= ̂𝜃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

that has to be negative semi-definite at ̂𝜃 denoting a local concavity. In some cases, the
first-order conditions of the likelihood function can be solved analytically.

10.2 Example: MLE in the Gaussian case

In the context of maximum likelihood estimation (MLE) for a normal (Gaussian) random
variable, let’s consider a set of 𝑛 independent and identically distributed (i.i.d.) random
variables 𝑋𝑛 = {𝑥1, 𝑥2, … , 𝑥𝑛} drawn from a normal distribution with unknown mean 𝜇 and
variance 𝜎2. The probability density function (pdf) of a normal distribution is given by:

𝑓(𝑥𝑖 ∣ 𝜇, 𝜎2) = 1√
2𝜋𝜎2 exp (−(𝑥𝑖 − 𝜇)2

2𝜎2 )

The likelihood function ℒ(𝜇, 𝜎2; 𝑋𝑛) is the joint probability of the observed data, viewed as a
function of the parameters 𝜇 and 𝜎2, i.e.

ℒ(𝜇, 𝜎2 ∣ 𝑋𝑛) =
𝑛

∏
𝑖=1

𝑓(𝑥𝑖 ∣ 𝜇, 𝜎2) =
𝑛

∏
𝑖=1

1√
2𝜋𝜎2 exp (−(𝑥𝑖 − 𝜇)2

2𝜎2 )

The log-likelihood function ℓ(𝜇, 𝜎2) is the natural logarithm of the likelihood function:

ℓ(𝜇, 𝜎2 ∣ 𝑋𝑛) = log ℒ(𝜇, 𝜎2 ∣ 𝑋𝑛) =
𝑛

∑
𝑖=1

log ( 1√
2𝜋𝜎2 exp (−(𝑥𝑖 − 𝜇)2

2𝜎2 ))
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Simplifying the log-likelihood function:

ℓ(𝜇, 𝜎2 ∣ 𝑋𝑛) =
𝑛

∑
𝑖=1

(−1
2 log(2𝜋) − 1

2 log(𝜎2) − (𝑥𝑖 − 𝜇)2

2𝜎2 ) =

= −𝑛
2 log(2𝜋) − 𝑛

2 log(𝜎2) − 1
2𝜎2

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇)2

To find the maximum likelihood estimates, we have to solve the partial derivatives of ℓ(𝜇, 𝜎2 ∣
𝑋𝑛) with respect to 𝜇 and 𝜎2, setting it equal to zero.

1. Condition for the mean (𝜇):

𝜕ℓ(𝜇, 𝜎2 ∣ 𝑋𝑛)
𝜕𝜇 = − 1

𝜎2

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇) = 0

⟹ 𝜇𝑀𝐿𝐸 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖

2. Condition for the variance (𝜎2):

𝜕ℓ(𝜇, 𝜎2 ∣ 𝑋𝑛)
𝜕𝜎2 = −𝑛

𝜎 + 1
𝜎3

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇)2 =

⟹ −𝑛𝜎2 +
𝑛

∑
𝑖=1

(𝑥𝑖 − 𝜇)2 = 0

⟹ (𝜎𝑀𝐿𝐸)2 = 1
𝑛

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇)2 = 0

MLE in the Gaussian case

Example 10.1. Let’s consider a normal random sample with 𝑛-observation. Let’s con-
sider the variance of the distribution known. Then, we can estimate the maximum
likelihood mean maximizing the log-likelihood.

Table 10.1: Moments estimate on the sample

Mean Variance Std.deviation
0.9936231 4.216398 2.053387
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Max−likelihood variance
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Figure 10.1: Log-likelihood function for a normal sample.
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11 Multivariate data

Let’s consider a matrix X with 𝑛-observations and 𝑘-variables. Then, let’s define some useful
operations that can be performed on the matrix.

X
𝑛×𝑘

=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑥1,1 … 𝑥1,𝑗 … 𝑥1,𝑘
⋮ ⋮ ⋮

𝑥𝑖,1 … 𝑥𝑖,𝑗 … 𝑥𝑖,𝑘
⋮ ⋮ ⋮

𝑥𝑛,1 … 𝑥𝑛,𝑗 … 𝑥𝑛,𝑘

⎞⎟⎟⎟⎟⎟⎟
⎠

(11.1)

11.1 Vector of means

Let’s consider the matrix X (Equation 11.1), then the vector of means for each column is
computed as:

x̄
𝑘×1

= ⎛⎜
⎝

̄𝑥1
⋮
̄𝑥𝑘

⎞⎟
⎠

= ( 1
𝑛J1,𝑛X)⊤ = 1

𝑛X⊤J𝑛,1 (11.2)

where J𝑛,1 is defined as in Equation 32.2.

11.2 Deviation matrix

Let’s compute the matrix of centered observations, where each element is computed as ̃𝑥𝑖,𝑗 =
𝑥𝑖,𝑗 − ̄𝑥𝑗, i.e.

X̃
𝑛×𝑘

=
⎛⎜⎜⎜⎜⎜⎜
⎝

̃𝑥1,1 … ̃𝑥1,𝑗 … ̃𝑥1,𝑘
⋮ ⋮ ⋮
̃𝑥𝑖,1 … ̃𝑥𝑖,𝑗 … ̃𝑥𝑖,𝑘
⋮ ⋮ ⋮
̃𝑥𝑛,1 … ̃𝑥𝑛,𝑗 … ̃𝑥𝑛,𝑘

⎞⎟⎟⎟⎟⎟⎟
⎠

(11.3)
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In matrix notation, it is possible to compute X̃ as:
X̃ = X − J1,𝑛x̄⊤ =

= X − J1,𝑛 ( 1
𝑛X⊤J1,𝑛)

⊤
=

= X − 1
𝑛J𝑛,1J1,𝑛X =

= (I𝑛 − 1
𝑛J𝑛) X = AX

where I𝑛 the identity matrix (Equation 32.3) and J1,𝑛 a matrix of ones (Equation 32.2). A is
called centering matrix and it is formally defined as:

A = I𝑛 − 1
𝑛J𝑛 (11.4)

11.3 Variance-covariance matrix

Remembering the case for two vectors x𝑘 and xℎ, the covariance is defined as:

ℂ𝑣{x𝑘, xℎ} = 1
𝑛

𝑛
∑
𝑖=1

(𝑥𝑖,𝑘 − ̄𝑥𝑘)(𝑥𝑖,ℎ − ̄𝑥ℎ) =

= 1
𝑛

𝑛
∑
𝑖=1

̃𝑥𝑖,𝑘 ̃𝑥𝑖,ℎ = x̃⊤
𝑘 x̃ℎ
𝑛

For a matrix X𝑛×𝑘, the covariance became a matrix 𝑘 × 𝑘 of the form:

ℂ𝑣{X}
𝑘×𝑘

=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝕍{x1} … ℂ𝑣{x1, x𝑗} … ℂ𝑣{x1, x𝑘}
⋮ ⋮ ⋮

ℂ𝑣{x𝑗, x1} … 𝕍{x𝑗} … ℂ𝑣{x𝑗, x𝑘}
⋮ ⋮ ⋮

ℂ𝑣{x𝑘, x1} … ℂ𝑣{x𝑘, x𝑗} … 𝕍{x𝑘}

⎞⎟⎟⎟⎟⎟⎟
⎠

In matrix notation, it can be computed as

ℂ𝑣{X} = 1
𝑛X̃⊤X̃ =

= 1
𝑛 (AX)⊤ AX =

= 1
𝑛X⊤A⊤AX

where A is the centering matrix (Equation 11.4). The variance-covariance matrix is:

1. Squared, i.e. 𝑘 × 𝑘, and symmetric.
2. Semi-definite positive.
3. Has the variances on the diagonal. Hence the trace (Equation 32.8) is 𝑡𝑟𝑎𝑐𝑒(ℂ𝑣{X}) =

∑𝑘
𝑗=1 𝕍{x𝑗}.
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11.4 Stardardized variables

In order to remove the effect of the unit of measure in the different variables it is possible to
work under the matrix of standardized variables, i.e.

Z
𝑛×𝑘

=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑧1,1 … 𝑧1,𝑗 … 𝑧1,𝑘
⋮ ⋮ ⋮

𝑧𝑖,1 … 𝑧𝑖,𝑗 … 𝑧𝑖,𝑘
⋮ ⋮ ⋮

𝑧𝑛,1 … 𝑧𝑛,𝑗 … 𝑧𝑛,𝑘

⎞⎟⎟⎟⎟⎟⎟
⎠

(11.5)

where each element 𝑧𝑖,𝑗 is defined as:

𝑧𝑖,𝑗 = ̃𝑥𝑖,𝑗

√𝕍{𝑥𝑗}
= 𝑥𝑖,𝑗 − ̄𝑥𝑗

√𝕍{𝑥𝑗}
.

In matrix notation, Z can be rewritten as:

Z = X̃ ⋅ D− 1
2

where the matrix D is defined as:

D
𝑘×𝑘

= ℂ𝑣{X} ⋅ I𝑘 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝕍{x1} … 0 … 0
⋮ ⋮ ⋮
0 … 𝕍{x𝑗} … 0
⋮ ⋮ ⋮
0 … 0 … 𝕍{x𝑘}

⎞⎟⎟⎟⎟⎟⎟
⎠

(11.6)

The standardized variables have mean equal to zero and unitary variance. Moreover, the
numbers do not depend anymore from the unit of measure of the variables.

11.5 Correlations matrix

The correlation is a statistic that measure the linear dependence between two variables, in the
simplest case the correlation between two vectors 𝑋𝑘 and 𝑋ℎ is computed as:

ℂ𝑟{x𝑘, xℎ} = ℂ𝑣{x𝑘, xℎ}
√𝕍{x𝑘}𝕍{xℎ}

=

= 1
𝑛

𝑛
∑
𝑖=1

(𝑥𝑖,𝑘 − ̄𝑥𝑘
√𝕍{x𝑘}

) (𝑥𝑖,ℎ − ̄𝑥ℎ
√𝕍{xℎ}

) =

= 1
𝑛

𝑛
∑
𝑖=1

𝑧𝑖,𝑘 𝑧𝑖,ℎ = 1
𝑛z⊤

𝑘 zℎ
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In matrix notation, ℂ𝑟{X} can be rewritten as a 𝑘 × 𝑘 matrix:

ℂ𝑟{X} = D− 1
2 ℂ𝑣{X} D− 1

2 =

= 1
𝑛D− 1

2 X̃⊤X̃ D− 1
2 =

= 1
𝑛Z⊤Z

where D is defined as in Equation 11.6. The correlation matrix is:

1. Squared, i.e. 𝑘 × 𝑘, and symmetric.
2. Positive semi-definited matrix.
3. Trace (Equation 32.8), i.e. 𝑡𝑟𝑎𝑐𝑒(ℂ𝑟{X}) = ∑𝑘

𝑗=1 1 = 𝑘.

The elements of the correlation matrix are:

ℂ𝑟{X}
𝑘×𝑘

=
⎛⎜⎜⎜⎜⎜⎜
⎝

1 … ℂ𝑟{x1, x𝑗} … ℂ𝑟{x1, x𝑘}
⋮ ⋮ ⋮

ℂ𝑟{x𝑗, x1} … 1 … ℂ𝑟{x𝑗, x𝑘}
⋮ ⋮ ⋮

ℂ𝑟{x𝑘, x1} … ℂ𝑟{x𝑘, x𝑗} … 1

⎞⎟⎟⎟⎟⎟⎟
⎠

Correlation matrix and standardized variables

The correlation matrix can be seen as the variance-covariance matrix of the standardized
variables Z (Section 11.4). In fact, a generic standardized 𝑗-variable has 𝕍{z𝑗} = 1 and
ℂ𝑣{z𝑗, z𝑘} = ℂ𝑟{z𝑗, z𝑘}.
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Part III

Statistical models
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12 Statistical models

Statistical modeling applies statistical methods to real-world data to give empirical content to
relationships. It aims to quantify phenomena and develop models and test hypotheses, making
it a crucial field for economic research, policy analysis, and decision-making. The aim of the
statistical modeling is to study the (unknown) mechanism that generates the data, i.e., the
Data Generating Process (DGP). The statistical model is a function that approximates the
DGP.

12.1 The matrix of data

Let’s consider 𝑛 realizations defining a sample for 𝑖 = 1, 2, … , 𝑛. Suppose we have 𝑝 dependent
variables and 𝑘 explanatory variables (also known as predictors). The data matrix for X, the
exogenous (regressors), is then composed as:

X
𝑛×𝑘

=
⎛⎜⎜⎜⎜
⎝

𝑥1,1 𝑥1,2 … 𝑥1,𝑗 … 𝑥1,𝑘
𝑥2,1 𝑥2,2 … 𝑥2,𝑗 … 𝑥2,𝑘

⋮ ⋮ ⋱ ⋮ ⋱ ⋮
𝑥𝑛,1 𝑥𝑛,2 … 𝑥𝑛,𝑗 … 𝑥𝑛,𝑘

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

x𝑇
1

x𝑇
2
⋮

x𝑇
𝑘

⎞⎟⎟⎟⎟
⎠

where

• The i-th row contains the variables related to the 𝑖-th statistical unit (e.g., an individual,
a firm, or a country).

• The j-th column contains all the observations related to the 𝑗-th variable.

The matrix Y represent the endogenous (dependent), i.e.

Y
𝑛×𝑝

=
⎛⎜⎜⎜⎜
⎝

𝑦1,1 𝑦1,2 … 𝑦1,𝑗 … 𝑦1,𝑝
𝑦2,1 𝑦2,2 … 𝑦2,𝑗 … 𝑦2,𝑝

⋮ ⋮ ⋱ ⋮ ⋱ ⋮
𝑦𝑛,1 𝑦𝑛,2 … 𝑦𝑛,𝑗 … 𝑦𝑛,𝑝

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

y𝑇
1

y𝑇
2
⋮

y𝑇
𝑝

⎞⎟⎟⎟⎟
⎠

Hence, the complete matrix of data is given by:

W
𝑛×(𝑘+𝑝)

= (Y X) = ⎛⎜
⎝

𝑦1,1 … 𝑦1,𝑝 𝑥1,1 … 𝑥1,𝑘
⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝑦𝑛,1 … 𝑦𝑛,𝑝 𝑥𝑛,1 … 𝑥𝑛,𝑘

⎞⎟
⎠

(12.1)
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In general, if 𝑝 = 1 then the model has only one equation to satisfy for 𝑖 = 1, … , 𝑛. For
example, a linear model with one equation reads:

𝑦𝑖 = 𝑏0 + 𝑏1𝑥𝑖,1 + 𝑏2𝑥𝑖,2 + ⋯ + 𝑏𝑘𝑥𝑖,𝑘 + 𝑒𝑖. (12.2)

Otherwise, when 𝑝 > 1 there are more than one dependent variable and the model is composed
by 𝑝-equations for 𝑖 = 1, … , 𝑛, i.e. the same linear model with 𝑝 equations reads:

⎧{{
⎨{{⎩

𝑦𝑖,1 = 𝑏0,1 + 𝑏1,1𝑥𝑖,1 + 𝑏1,2𝑥𝑖,2 + ⋯ + 𝑏1,𝑘𝑥𝑖,𝑘 + 𝑒𝑖,1
𝑦𝑖,2 = 𝑏0,2 + 𝑏2,1𝑥𝑖,1 + 𝑏2,2𝑥𝑖,2 + ⋯ + 𝑏2,𝑘𝑥𝑖,𝑘 + 𝑒𝑖,2
⋮
𝑦𝑖,𝑝 = 𝑏0,𝑝 + 𝑏𝑝,1𝑥𝑖,1 + 𝑏𝑝,2𝑥𝑖,2 + ⋯ + 𝑏𝑝,𝑘𝑥𝑖,𝑘 + 𝑒𝑖,𝑝

(12.3)

12.2 Joint, conditional and marginals

Let’s consider the bi-dimensional random vector W in Equation 12.1 and let’s write the joint
distribution of X and Y, i.e.

ℙ(Y ≤ y, X ≤ x)
joint probability

= 𝐹Y,X(y, x)
distribution function

(12.4)

In the continuous case, there exists a joint density 𝑓Y,X(y, x) such that:

𝐹Y,X(y, x) = ∫
x

−∞
∫

y

−∞
𝑓Y,X(y, x)𝑑y𝑑x (12.5)

Moreover, from the joint distribution (Equation 12.4) it is possible to recover the marginals
distributions, i.e.

𝑓Y(y) = 𝜕y𝐹Y,X(y, x) = ∫
∞

−∞
𝑓Y,X(y, x)𝑑x

𝑓X(x) = 𝜕x𝐹Y,X(y, x) = ∫
∞

−∞
𝑓Y,X(y, x)𝑑y

(12.6)

Given the marginals (Equation 12.6), it is possible to compute the unconditional moments,
i.e.

1. First moment: 𝔼{Y} = ∫∞
−∞ y𝑓Y(y)𝑑y.

2. Second moment: 𝔼{Y2} = ∫∞
−∞ y2𝑓Y(y)𝑑y.

3. Variance: 𝕍{Y} = 𝔼{Y2} − 𝔼{Y}2.
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Using the Bayes theorem, from the joint distribution (Equation 12.4) it is possible to recover
the conditional distribution, i.e

𝑓Y|X(y|x) = 𝑓Y,X(y, x)
𝑓X(x) (12.7)

Given the conditional distributions, it is possible to compute the conditional moments, i.e.

1. First moment: 𝔼{Y|X} = ∫∞
−∞ y𝑓Y|X(y|x)𝑑y.

2. Second moment: 𝔼{Y2|X} = ∫∞
−∞ y2𝑓Y|X(y|x)𝑑y.

Hence, from Equation 12.7 the joint density can be represented as the product of the condi-
tional and the marginal, i.e.

𝑓Y,X(y, x)
joint

= 𝑓Y|X(y|x)
conditional

⋅ 𝑓X(x)
marginal

(12.8)

Inference in a multivariate Gaussian model

Let’s consider a Gaussian setup, i.e.

W⊤ = (Y
X) ∼ 𝒩 ((𝜇Y

𝜇X
) , (ΣYY ΣYX

𝜇XY ΣXX
))

For a Gaussian setup if (X Y) are jointly normal, then the marginals are normal, i.e.

Y ∼ 𝒩(𝜇Y, ΣYY), X ∼ 𝒩(𝜇X, ΣXX).

and also the conditionals distributions are normal, i.e.

Y|X ∼ 𝒩(𝜇Y|X, ΣYY|X), X|Y ∼ 𝒩(𝜇X|Y, ΣXX|Y).

and the conditional moments reads explicitly as:

𝔼{Y ∣ X} = 𝜇Y∣X =
= 𝜇Y + ΣYX ⋅ Σ−1

XX(X − 𝜇X) =
= 𝜇Y − ΣYX ⋅ Σ−1

XX 𝜇X + ΣYX ⋅ Σ−1
XX X =

= 𝜇Y − bY∣X 𝜇X + bY|X X =
= aY∣X + bY∣X X

and
𝕍{Y|X} = ΣYY − ΣYX ⋅ Σ−1

XXΣYX

In this setup the parameters are:

• Joint distribution, 𝜃 = {𝜇Y, 𝜇X, ΣXX, ΣXY, ΣYY}.
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• Conditional distribution, 𝜆1 = {aY|X, bY|X, ΣYY|X}.
• Marginal distribution, 𝜆2 = {𝜇X, ΣXX}.

Noting that 𝜆1 is a function of 𝜃, i.e. 𝜏 = 𝑓(𝜆1) in the Gaussian case it is possible
to prove that 𝜆1 and 𝜆2 are free to vary. Hence, imposing restrictions on 𝜆1 do not
impose restrictions on 𝜆2. In general, if the parameters of interest are a function of the
conditional distribution and 𝜆1 and 𝜆2 are free to vary, then the inference can be done
without losing of information considering the conditional model. In this case we say that
X is weakly exogenous for 𝜏 = 𝑓(𝜆1).

12.3 Conditional expectation model

Let’s consider a very general conditional expectation model with 𝑝 = 1, of which the linear
models are a special case. In matrix notation it can be written as:

y = 𝔼{y ∣ X} + e (12.9)

where the conditional expectation errors are defined as:

e = y − 𝔼{y ∣ X} (12.10)

Then, in general the unconditional expectation of the residuals e and the covariance between
the residuals and the regressors are zero, i.e.

𝔼{e} = 0, 𝔼{eX} = 0.

Moreover, the conditional expectation error is orthogonal to any transformation of the condi-
tioning variables. Consider a more general setup, i.e.

y = 𝔼{y ∣ X} + e, 𝔼{y ∣ X} = 𝑔(X) (12.11)

we have that

𝔼{e 𝑔(X)} = 0.

In a conditional expectation model the residuals and the regressors are uncorrelated

Proof. Let’s start the unconditional expectation of the residuals defined in Equation 12.9,
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i.e.
𝔼{e} = 𝔼{y − 𝔼{y ∣ X}} =

= 𝔼{y} − 𝔼{𝔼{y ∣ X}} =
= 𝔼{y} − 𝔼{y} = 0

Then, let’s compute the expected value of between the residuals and the regressors, i.e.

𝔼{e} = 0 ⟹ ℂ𝑣{e, X} = 𝔼{eX}

For simplicity let’s assume that X can takes only values in {0, 1}. Applying the tower
property of conditional expectation one obtain:

𝔼{eX} = 𝔼{𝔼{eX ∣ X}} =
= 𝔼{eX ∣ X = 0}ℙ(X = 0) + 𝔼{eX ∣ X = 1}ℙ(X = 1) =
= 𝔼{eX ∣ X = 1}ℙ(X = 1)

Then, let’s substitute e from Equation 12.9 and X with 1, i.e.

𝔼{eX} = 𝔼{(y − 𝔼{y|X})X ∣ X = 1}ℙ(X = 1) =
= 𝔼{y ∣ X = 1}ℙ(X = 1) − 𝔼{𝔼{y|X} ∣ X = 1}ℙ(X = 1) =
= 𝔼{y ∣ X = 1}ℙ(X = 1) − 𝔼{y ∣ X = 1}ℙ(X = 1) = 0

For a general transformation of the regressors as in Equation 12.11, the covariance is
computed as:

𝔼{e𝑔(X)} = 𝔼{𝔼{e𝑔(X) ∣ X}} =
= 𝔼{𝑔(X) 𝔼{e ∣ X}} =
= 𝔼{𝑔(X) 𝔼{y − 𝔼{y|X} ∣ X}} =
= 𝔼{𝑔(X) [𝔼{y ∣ X} − 𝔼{y ∣ X}]} = 0
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13 Introduction to linear models

Let’s consider an uni-equational linear model, i.e. with 𝑝 = 1 in (Equation 12.2), is expressed
in compact matrix notation as:

y = Xb + e, (13.1)
where b and e represent the true parameters and residuals in population. Let’s consider a
sample of 𝑛-observations extracted from a population, then the matrix of the regressors X
reads

X
𝑛×𝑘

= ⎛⎜
⎝

𝑥1,1 … 𝑥1,𝑘
⋮ ⋮

𝑥𝑛,1 … 𝑥𝑛,𝑘

⎞⎟
⎠

= ⎛⎜
⎝

x⊤
1
⋮

x⊤
𝑘

⎞⎟
⎠

,

while the vectors of dependent variable and of the residuals reads

y
𝑛×1

= ⎛⎜
⎝

𝑦1
⋮

𝑦𝑝

⎞⎟
⎠

, e
𝑛×1

= ⎛⎜
⎝

𝑒1
⋮

𝑒𝑛

⎞⎟
⎠

Hence, the matrix of data is composed by:

W
𝑛×(𝑘+1)

= (y X) = ⎛⎜
⎝

𝑦1 𝑥1,1 … 𝑥1,𝑘
⋮ ⋮ ⋱ ⋮

𝑦𝑛 𝑥𝑛,1 … 𝑥𝑛,𝑘

⎞⎟
⎠

(13.2)

Depending on the assumptions made on the variance of the residuals the linear models can be
distinguished in 3 classes as shown in Figure 13.1.

For a generalized linear model the variance-covariance matrix of the residuals in matrix nota-
tion is written as:

Σ
𝑛×𝑛

= 𝕍{ee⊤|X} = 𝔼{ee⊤|X}
where the 𝑛 × 𝑛 elements are

Σ
𝑛×𝑛

=
⎛⎜⎜⎜⎜
⎝

𝑒2
1 𝑒1𝑒2 … 𝑒1𝑒𝑛

𝑒2𝑒1 𝑒2
2 … 𝑒2𝑒𝑛

⋮ ⋮ ⋮
𝑒𝑛𝑒1 𝑒𝑛𝑒2 … 𝑒2

𝑛

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

𝜎2
1 𝜎1,2 … 𝜎1,𝑛

𝜎2,1 𝜎2
2 … 𝜎2,𝑛

⋮ ⋮ ⋮
𝜎𝑛,1 𝜎𝑛,2 … 𝜎2

𝑛

⎞⎟⎟⎟⎟
⎠

(13.3)

Since the matrix Σ is symmetric the number of unique values (free elements) are given by 𝑛
variances and 𝑛(𝑛−1)

2 covariances. Hence, the total number of free elements is given by:

𝑛 + 𝑛(𝑛 − 1)
2 = 2𝑛 + 𝑛2 − 𝑛

2 = 𝑛 + 𝑛2

2 = 𝑛(𝑛 + 1)
2
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Figure 13.1: Different classes of linear models.

13.0.1 Estimators of b

Let’s denote with Θb the parameter space, i.e. Θb ⊂ ℝ𝑘, and with 𝑄 an estimator function
of the unknown true parameter b ∈ Θb. Then, the function 𝑄 defines an estimator of
b, meaning it is a function that takes the matrix of data as input and returns a vector of
parameters within Θb as output:

𝑄 ∶ W ⟶ Θb, such that 𝑄(W) = b̂ ∈ Θb

where b̂ is an estimates of the true population’s parameter b. Then, the fitted values ŷ are
a function of the estimate and are defined as:

ŷ = Xb̂ (13.4)

Consequently, the fitted residuals, which measure the discrepancies between the observed and
the fitted values, are also a function of b̂, i.e.

e(b̂) = y − ŷ = y − Xb̂ (13.5)

13.1 Variance decomposition

In a linear model, the deviance (or total variance) of the dependent variable y can be decom-
posed into the sum of the regression variance and the dispersion variance. This decomposition
helps us understand how much of the total variability in the data is explained by the model
and how much is due to unexplained variability (residuals).
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• Total Deviance (𝔻𝑒𝑣{y}): represents the total variability of the dependent variable y.
It is calculated as the sum of the squared difference of 𝑦𝑖 from its mean ̄𝑦.

• Regression Deviance (𝔻𝑒𝑣ℝ𝑒𝑔{y}): represents the portion of variability that is ex-
plained by the regression model. It is computed as the sum of the squared differences
between the fitted values ̂𝑦𝑖 and ̄𝑦.

• Dispersion Deviance (𝔻𝑒𝑣𝔻𝑖𝑠𝑝{y}): represents the portion of variability that is not
explained by the model. It is computed as the sum of the squared differences between
the observed values 𝑦𝑖 and the fitted values ̂𝑦𝑖 (Equation 13.4).

Hence, the total deviance of y can be decomposed as follows:

𝔻𝑒𝑣{y} = 𝔻𝑒𝑣ℝ𝑒𝑔{y} + 𝔻𝑒𝑣𝔻𝑖𝑠𝑝{y}
𝑛

∑
𝑖=1

(𝑦𝑖 − ̄𝑦)2 =
𝑛

∑
𝑖=1

( ̂𝑦𝑖 − ̄𝑦)2 +
𝑛

∑
𝑖=1

( ̂𝑦𝑖 − 𝑦𝑖)2

y⊤y − 𝑛 ̄𝑦2 = b⊤X⊤Xb − 𝑛 ̄𝑦2 + e⊤e

(13.6)

Regression deviance

Proof. Let’s prove the expression for the regression deviance 𝔻𝑒𝑣ℝ𝑒𝑔{y}, i.e.

𝔻𝑒𝑣ℝ𝑒𝑔{y} = 𝔻𝑒𝑣{y} − 𝔻𝑒𝑣𝔻𝑖𝑠𝑝{y} =
= y⊤y − 𝑛 ̄𝑦2 − e⊤e =
= y⊤y − 𝑛 ̄𝑦2 − (y − Xb)⊤ (y − Xb) =
= y⊤y − 𝑛 ̄𝑦2 + y⊤y − y⊤Xb − yb⊤X⊤ + b⊤X⊤Xb =
= 2y⊤y − 𝑛 ̄𝑦2 − 2y⊤(Xb) + b⊤X⊤Xb =
= b⊤X⊤Xb − 𝑛 ̄𝑦2

The decomposition of the deviance of y holds true also with respect to the correspondents
degrees of freedom,

Table 13.1: Deviance and variance decomposition in a multivariate linear model

Deviance
Degrees of
freedom Variance

𝔻𝑒𝑣{y} = ∑𝑛
𝑖=1(𝑦𝑖 − ̄𝑦)2 𝑛 − 1 ̂𝑠2

𝑦 = 𝔻𝑒𝑣{y}
𝑛−1

𝔻𝑒𝑣ℝ𝑒𝑔{y} = ∑𝑛
𝑖=1( ̂𝑦𝑖 − ̄𝑦)2 𝑘 ̂𝑠2

𝑟 = 𝔻𝑒𝑣ℝ𝑒𝑔{y}
𝑘

𝔻𝑒𝑣𝔻𝑖𝑠𝑝{y} = ∑𝑛
𝑖=1( ̂𝑦𝑖 − 𝑦𝑖)2 𝑛 − 𝑘 − 1 ̂𝑠2

𝑒 = 𝔻𝑒𝑣𝔻𝑖𝑠𝑝{y}
𝑛−𝑘−1
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13.2 Multivariate R Squared

The 𝑅2 statistic, also known as the coefficient of determination, is a measure used to assess
the goodness of fit of a regression model. In a multivariate context, it evaluates how well the
independent variables explain the variability of the dependent variable.

Definition 13.1. (Multivariate 𝑅2)
The 𝑅2 is defined as the ratio of the deviance explained by the model (𝔻𝑒𝑣ℝ𝑒𝑔{y}) to the total
deviance (𝔻𝑒𝑣{y}). It can also be expressed as one minus the ratio of the residual deviance
(𝔻𝑒𝑣𝔻𝑖𝑠𝑝{y}) to the total deviance, i.e.

𝑅2 = 𝔻𝑒𝑣ℝ𝑒𝑔{y}
𝔻𝑒𝑣{y} = 1 − 𝔻𝑒𝑣𝔻𝑖𝑠𝑝{y}

𝔻𝑒𝑣{y} (13.7)

Using the variance decomposition (Equation 13.6), it is possible to write the 𝑅2 as:

𝑅2 = b⊤X⊤Xb − 𝑛 ̄𝑦2

y⊤y − 𝑛 ̄𝑦2 = 1 − e⊤e
y⊤y − 𝑛 ̄𝑦2

The numerator represents the variance explained by the regression model, while the denom-
inator the total variance in the dependent variable. The term e⊤e in the second expression
represents the variance of the residuals, or the variance not explained by the model. An 𝑅2

value close to 1 indicates that a large proportion of the variability in the dependent variable
has been accounted for by the regression model, while a value close to 0 indicates that the
model explains very little of the variability.

Limitations of 𝑅2

The 𝑅2 metric has some limitations. Firstly, it can be close to 1 even if the relationship
between the variables is not linear. Additionally, 𝑅2 increases whenever a new regressor
is added to the model, making it unsuitable for comparing models with different numbers
of regressors.

A more robust indicator that does not always increase with the addition of a new regressor is
the adjusted 𝑅2, which is computed as:

�̄�2 = 1 − 𝑛 − 1
𝑛 − 𝑘 − 1

𝔻𝑒𝑣𝔻𝑖𝑠𝑝{y}
𝔻𝑒𝑣{y} = 1 − ̂𝑠2

𝑒
̂𝑠2𝑦

The adjusted 𝑅2 can be negative, and its value will always be less than or equal to that of
𝑅2. Unlike 𝑅2, the adjusted 𝑅2 increases only when the new explanatory variable improves
the model more than would be expected simply by adding another variable.
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Adjusted 𝑅2

Proof. To arrive at the formulation of the adjusted 𝑅2 let’s consider that under the null
hypothesis 𝐻0 ∶ 𝑏1 = 𝑏2 = ⋯ = 𝑏𝑘 the variance of regression ̂𝑠2

𝑟 (Table 13.1) is a correct
estimate of the variance of the residuals 𝜎2

𝑒 . Hence, under 𝐻0:

𝑛 − 1
𝑘 𝔼 {𝔻𝑒𝑣ℝ𝑒𝑔{y}

𝔻𝑒𝑣{y} } ∼= 1

This implies that the expectation of the 𝑅2 is not zero (as it should be under 𝐻0) but:

𝔼{𝑅2} ∼= 𝑘
𝑛 − 1

Let’s rescale the 𝑅2 such that when 𝐻0 holds true it is equal to zero, i.e.

𝑅2
𝑐 = 𝑅2 − 𝑘

𝑛 − 1
However, the specification of 𝑅2

𝑐 implies that when 𝑅2 = 1 (perfect linear relation between
X and y) the value of 𝑅2

𝑐 < 1, i.e. 𝑅2
𝑐 = 𝑛−𝑘−1

𝑛−1 < 1. Hence, let’s correct again the
indicator such that it takes values in [0, 1], i.e.

�̄�2 = (𝑅2 − 𝑘
𝑛 − 1) 𝑛 − 1

𝑛 − 𝑘 − 1 =

= (𝑅2(𝑛 − 1) − 𝑘
𝑛 − 1 ) 𝑛 − 1

𝑛 − 𝑘 − 1 =

= 𝑛 − 1
𝑛 − 𝑘 − 1𝑅2 − 𝑘

𝑛 − 𝑘 − 1
Remembering that 𝑅2 can be rewritten as in Equation 13.7 one obtain:

�̄�2 = 𝑛 − 1
𝑛 − 𝑘 − 1 (1 − 𝔻𝑒𝑣𝔻𝑖𝑠𝑝{y}

𝔻𝑒𝑣{y} ) − 𝑘
𝑛 − 𝑘 − 1 =

= (𝑛 − 1)𝔻𝑒𝑣{y} − (𝑛 − 1)𝔻𝑒𝑣𝔻𝑖𝑠𝑝{y}
𝔻𝑒𝑣{y}(𝑛 − 𝑘 − 1) − 𝑘

𝑛 − 𝑘 − 1 =

= 𝑛 − 1
𝑛 − 𝑘 − 1 − 𝑛 − 1

𝑛 − 𝑘 − 1
𝔻𝑒𝑣𝔻𝑖𝑠𝑝{y}

𝔻𝑒𝑣{y} − 𝑘
𝑛 − 𝑘 − 1 =

= 1 − 𝑛 − 1
𝑛 − 𝑘 − 1

𝔻𝑒𝑣𝔻𝑖𝑠𝑝{y}
𝔻𝑒𝑣{y} =

= 1 − ̂𝑠2
𝑒
̂𝑠2𝑦
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14 Classic linear models

14.1 Working hypothesis

Let’s start from the classic assumptions for a linear model, i.e. the Gauss-Markov ones. The
working hypothesis for such kind of models are:

1. 𝔼{𝑦𝑖|x1, … , x𝑛} = 𝔼{𝑦𝑖|X} = x⊤
𝑖 b for 𝑖 = 1, … 𝑛.

2. 𝕍{𝑦𝑖|x1, … , x𝑛} = 𝕍{𝑦𝑖|X} = 𝜎2
𝑒 with 0 < 𝜎2

𝑒 < ∞.
3. ℂ𝑣{𝑦𝑖, 𝑦𝑗|x1, … , x𝑛} = ℂ𝑣{𝑦𝑖, 𝑦𝑗|X} = 0 with 𝑖 ≠ 𝑗 and 𝑖, 𝑗 ∈ {1, … , 𝑛}.

Equivalently the formulation in terms of the stochastic component reads

1. 𝑦𝑖 = x⊤
𝑖 b + 𝑒𝑖 for 𝑖 = 1, … 𝑛.

2. 𝔼{𝑒𝑖|x1, … , x𝑛} = 𝔼{𝑒𝑖|X} = 0.
3. 𝕍{𝑒𝑖|x1, … , x𝑛} = 𝕍{𝑒𝑖|X} = 𝜎2

𝑒 with 0 < 𝜎2
𝑒 < ∞.

4. ℂ𝑣{𝑒𝑖, 𝑒𝑗|x1, … , x𝑛} = ℂ𝑣{𝑒𝑖, 𝑒𝑗|X} = 0 with 𝑖 ≠ 𝑗 and 𝑖, 𝑗 ∈ {1, … , 𝑛}.

Hence, the error terms is assumed to be IID with constant variance and the variance covariance
matrix in Equation 13.3 reduces to Σ = 𝜎2

𝑒I𝑛.

14.2 Ordinary least squares (OLS)

Proposition 14.1. (Ordinary Least Squares (OLS))
The ordinary least squares estimator (OLS) is the function 𝑄 that minimize the sum of the
squared residuals and return an estimate bOLS of the true parameter b. The OLS optimization
problem reads:

argmin
bOLS∈Θb

𝑄(bOLS) = argmin
bOLS∈Θb

{e(bOLS)⊤e(bOLS)} (14.1)

Notably, if X is non-singular it is possible to recover an analytic solution, i.e.

bOLS = (X⊤X)−1X⊤y (14.2)
Equivalently, it is possible to express the solution in terms of the covariance matrix of the X
and between the X and the y, i.e.

bOLS = ℂ𝑣{X}−1ℂ𝑣{X, Y} (14.3)
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Singularity of X

Note that the solution is available if and only if X is non-singular. Hence, the columns
should not be linearly dependent. In fact, one of the 𝑘-variables can be written as a
linear combination of the others, then the determinant of the matrix X⊤X is zero and
the inversion is not possible. Moreover, to have that 𝑟𝑎𝑛𝑘(X⊤X) = 𝑘 it is necessary that
the number of observations have to be greater or equal than the number of regressors,
i.e. 𝑛 ≥ 𝑘.

Ordinary Least Square (OLS)

Proof. Let’s prove the optimal solution in Equation 14.2. Developing the optimization
problem in Equation 14.1:

𝑄(bOLS) = e(bOLS)⊤e(bOLS) =
= (y − XbOLS)⊤(y − XbOLS) =
= y⊤y − (bOLS)⊤X⊤y − y⊤XbOLS + (bOLS)⊤X⊤XbOLS =
= y⊤y − 2(bOLS)⊤X⊤y + (bOLS)⊤X⊤XbOLS

(14.4)

In order to find the minimum, let’s compute the derivative with respect to bOLS of 𝑄
and setting it equal to zero, i.e.

𝑑Q(bOLS)
𝑑bOLS = −2X⊤y + 2X⊤XbOLS = 0

⟹ X⊤y = X⊤XbOLS

⟹ bOLS = (X⊤X)−1X⊤y
The second derivatives is positive, hence the solution corresponds to a minimum for the
function 𝑄, i.e.

𝑑2Q(bOLS)
𝑑bOLS𝑑(bOLS)⊤ = 2X⊤X > 0

Let’s now consider the alternative expression in Equation 14.3. Considering the same
optimization problem, let’s denote as:

1
𝑛

𝑛
∑
𝑖=1

x𝑖x⊤
𝑖 = ℂ𝑣{X} 1

𝑛
𝑛

∑
𝑖=1

x𝑖𝑦⊤
𝑖 = ℂ𝑣{X, Y}

Then, substituting such values in Equation 14.2 it is straightforward to prove that bOLS

can be written as in Equation 14.3.

80



Intercept estimate

If in the data matrix X was included a column with ones, then the intercept parameter
is obtained from Equation 14.2 or Equation 14.3. However, if it was not included, it is
computed as:

𝛼OLS = 𝔼{Y} − bOLS𝔼{X}

14.2.1 Projection matrices

Substituting the OLS solution (Equation 14.2) in Equation 13.1 we obtain the matrix H, that
project the vector y on the sub space of ℝ𝑛 generated by the matrix of the regressors X, i.e.

H = X(X⊤X)−1X⊤ (14.5)

As properties we have that:

1. H is an 𝑛 × 𝑛 symmetric matrix.
2. H H = H is idempotent.
3. H X = X.

Instead, substituting the OLS solution (Equation 14.2) in the residuals (Equation 13.5) we
obtain the projection matrix M that project the vector y on the orthogonal sub-space with
respect to the sub-space generated by the matrix of the regressors X, i.e.

M = I𝑛 − H (14.6)

As properties we have that:

1. M is an 𝑛 × 𝑛 symmetric matrix.
2. M M = H is idempotent.
3. M X = 0.

By definition M and H are orthogonal, i.e. H M = 0. Hence, the fitted values defined as ŷ =
Hy are the projection of the empiric values on the sub-space generated by X. Symmetrically,
the fitted residuals ê = My are the projection of the empiric values on the sub-space orthogonal
to the sub-space generated by X.
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Projection matrices

Proof. Let’s consider the property 2 of H, i.e.

H H = (X(X⊤X)−1X⊤) (X(X⊤X)−1X⊤) =
= (X⊤X)−1X⊤ =
= H

Let’s consider the property 3 of H, i.e.

H X = (X(X⊤X)−1X⊤) X = X

Let’s consider the property 2 of M, i.e.

M M = (I𝑛 − H) (I𝑛 − H) =
= I𝑛 − H =
= M

Let’s consider the property 3 of M, i.e.

M X = (I𝑛 − H)X =
= (I𝑛 − X(X⊤X)−1X⊤) X =
= X − X = 0

Finally, let’s prove the orthogonality between M and H, i.e.

H M = H (I𝑛 − H) = H − H = 0

14.3 Properties OLS

Theorem 14.1. (Gauss-Markov theorem)
Under the Gauss-Markov hypothesis the Ordinary Least Square (OLS) estimate is BLUE
(Best Linear Unbiased Estimator), where “best” stands for the estimator with minimum
variance in the class of linear unbiased estimators of b. The Gauss-Markov hypothesis are:

1. y = Xb + e.
2. 𝔼{e} = 0.
3. 𝔼{ee⊤} = 𝜎2

𝑒I𝑛, i.e. omoskedasticity.
4. X is non-stochastic and independent from the errors for all 𝑛’s.
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Proposition 14.2. (Properties OLS estimator)
1. Unbiased: bOLS is correct and it’s conditional expectation is equal to true parameter in
population, i.e.

𝔼{bOLS ∣ X} = b (14.7)

2. Linear in the sense that it can be written as a linear combination of y and X,
i.e. bOLS = Axy, where Ax do not depend on y, i.e.

bOLS = Axy, Ax = (X⊤X)−1X⊤ (14.8)

3. Under the Gauss-Markov hypothesis (Theorem 14.1) it has minimum variance in the
class of the unbiased linear estimators and it reads:

𝕍{bOLS ∣ X} = 𝜎2
𝑒(X⊤X)−1 (14.9)

Variance Inflation Factor (VIF)

The elements on the diagonal of the matrix (X⊤X)−1 determine the variances while the
other elements the covariances. In general the variance of the 𝑗-th regressor is denoted as
𝕍{𝑏𝑗} = 𝜎2

𝑒𝑐𝑗𝑗 where 𝑐𝑗𝑗 is the 𝑗-th element on the diagonal of (X⊤X)−1. An alternative
expression for the variance is:

𝕍{𝑏𝑗} = 𝜎2
𝑒

𝔻𝑒𝑣{X𝑗}
1

1 − 𝑅2
𝑗0

where 𝑅2
𝑗0 is the multivariate coefficient of determination on the regression of Xj on

the other regressors. The term 1
1−𝑅2

𝑗0
is also denoted as VIF𝑗 standing for Variance

Inflation Factor.

Properties of the OLS estimator

Proof.

• The OLS estimator is correct: it’s expected value is computed from Equation 14.2
and substituting Equation 13.1, is equal to the true parameter in population, i.e.

𝔼{bOLS ∣ X} = 𝔼{(X⊤X)−1X⊤y ∣ X} =
= 𝔼{(X⊤X)−1X⊤(Xb + e) ∣ X} =
= (X⊤X)−1X⊤Xb + (X⊤X)−1X⊤𝔼{e ∣ X} =
= b

• In general, applying the properties of the variance operator, the variance of bOLS
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is computed as:

𝕍{bOLS ∣ X} = 𝕍{(X⊤X)−1X⊤y ∣ X} =
= 𝕍{(X⊤X)−1X⊤(Xb + e) ∣ X} =
= 𝕍{(X⊤X)−1X⊤Xb + (X⊤X)−1X⊤e ∣ X} =
= 𝕍{b + (X⊤X)−1X⊤e ∣ X} =
= 𝕍{(X⊤X)−1X⊤e ∣ X}

Then, since X is non-stochastic it is possible to take it outside the variance squaring
it and obtaining:

𝕍{bOLS ∣ X} = (X⊤X)−1X⊤𝕍{e ∣ X} X(X⊤X)−1 =
= (X⊤X)−1X⊤𝔼{ee⊤ ∣ X} X(X⊤X)−1 (14.10)

Under the Gauss Markov hypothesis (Theorem 14.1) the conditional variance 𝕍{e ∣
X} = 𝜎 ⋅ I𝑛 and therefore the Equation 14.10 reduces to:

𝕍{bOLS ∣ X} = 𝜎2
𝑒(X⊤X)−1X⊤X(X⊤X)−1 =

= 𝜎2
𝑒(X⊤X)−1

14.4 Estimator of 𝜎2
𝑒

The OLS estimator do not depend on 𝜎2
𝑒 and it is not possible to obtain in one step both

the estimators. As far as we know 𝜎2
𝑒 is the variance of the residuals of which we know the

realized values on the sample ê = { ̂𝑒1, ̂𝑒2, … , ̂𝑒𝑛}. Hence, let’s define a correct estimator of the
population variance 𝜎2

𝑒 as:

̂𝑠2
𝑒 = ê⊤ ê

𝑛 − 𝑘 − 1
Instead, in general the regression variance overestimate the true variance 𝜎2

𝑒 , i.e.

̂𝑠2
𝑒 = 𝜎2

𝑒 + 𝑔(b, X, 𝑘), 𝑔(b, X, 𝑘) ≥ 0

Only in the special case where 𝑏1 = 𝑏2 = ⋯ = 𝑏𝑘 in population, then 𝑔(b, X, 𝑘) = 0 and also
the regression variance produces a correct estimate of 𝜎2

𝑒 .

Correct estimator of 𝜎2
𝑒

Proof. By definition, the residuals can be computed pre multiplying the matrix M to y,
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i.e.
ê = y − ŷ =

= y − XbOLS =
= y − X(X⊤X)−1X⊤y =
= (I𝑛 − H)y =
= My

Substituting y = XbOLS + e:

̂e = M(XbOLS + e) =
= MXbOLS + Me =
= Me

since MX = 0. Being M symmetric and idempotent:

ê⊤ ê = (Me)⊤(Me) =
= e⊤M⊤Me =
= e⊤Me

The expected value of the deviance of dispersion is:

𝔼{ê⊤ ê} = 𝔼{e⊤Me} =
= 𝔼{𝑡𝑟𝑎𝑐𝑒(e⊤Me)} =
= 𝔼{𝑡𝑟𝑎𝑐𝑒(Mee⊤)} =
= 𝑡𝑟𝑎𝑐𝑒(M𝔼{ee⊤}) =
= 𝔼{ee⊤} ⋅ 𝑡𝑟𝑎𝑐𝑒(MI𝑛) =
= 𝜎2

𝑒 ⋅ 𝑡𝑟𝑎𝑐𝑒(M I𝑛) =
= 𝜎2

𝑒 ⋅ 𝑡𝑟𝑎𝑐𝑒(M)

since ê⊤Mê is a scalar. The trace of the matrix M is:

𝑡𝑟𝑎𝑐𝑒(M) = 𝑡𝑟𝑎𝑐𝑒(I𝑛 − H) =
= 𝑡𝑟𝑎𝑐𝑒(I𝑛) − 𝑡𝑟𝑎𝑐𝑒(X(X⊤X)−1X⊤) =
= 𝑡𝑟𝑎𝑐𝑒(I𝑛) − 𝑡𝑟𝑎𝑐𝑒(X⊤X(X⊤X)−1) =
= 𝑡𝑟𝑎𝑐𝑒(I𝑛) − 𝑡𝑟𝑎𝑐𝑒(J𝑘+1) =
= 𝑛 − 𝑘 − 1

Hence the expectation of the deviance of dispersion is:

𝔼{𝔻𝑒𝑣𝔻𝑖𝑠𝑝{y}} = 𝜎2
𝑒 ⋅ (𝑛 − 𝑘 − 1) ⟹ ̂𝑠2

𝑒 = ê⊤ ê
𝑛 − 𝑘 − 1
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Instead, in general the expected value of the deviance of regression is greater than 𝜎2
𝑒 ,

i.e.
𝔼{𝔻𝑒𝑣ℝ𝑒𝑔{y}} = 𝑘 ⋅ 𝜎2

𝑒 + 𝑔(b, X), 𝑔(b, X) ≥ 0
In the special case in which 𝑏1 = 𝑏2 = ⋯ = 𝑏𝑘 in population, then 𝑔(b, X) is zero and
also the variance of regression produces a correct estimate of 𝜎2

𝑒 .

14.5 Test on the parameters

Let’s consider a linear model where the residuals e are IID normally distributed random
variables. Hence, the working hypothesis of the Gauss Markov theorem holds true.

14.5.1 F-test

The 𝐹 -test evaluates the significance of the entire regression model by testing the null hypoth-
esis of linear independence between y and X, i.e.

𝐻0 ∶ 𝑏1 = 𝑏2 = ⋯ = 𝑏𝑘 = 0

where the only coefficient different from zero is the intercept. The test statistic is given by

𝐹 = ̂𝑠2
𝑟
̂𝑠2𝑒

= 𝔻𝑒𝑣ℝ𝑒𝑔(y) ⋅ (𝑛 − 𝑘 − 1)
𝑘 ⋅ 𝔻𝑒𝑣𝔻𝑖𝑠𝑝(y) ∼ F𝑘,𝑛−𝑘−1

where ̂𝑠2
𝑟 is the regression variance, ̂𝑠2

𝑒 is the dispersion variance. By fixing a significance level
𝛼, the null hypothesis 𝐻0 is rejected if 𝐹 > 𝐹𝛼.

Interpretation 𝐹 -test

If the null hypothesis 𝐻0 is rejected then:

• The variability of 𝑌 explained by the model is significantly greater than the residual
variability.

• At least one of the 𝑘 regressors has a coefficient 𝑏𝑘 that is significantly different
from zero in the population.

On contrary if 𝐻0 is not rejected, then the model is not adequate and there is no
evidence of a linear relation between y and X.

Remembering the relation between the deviance and the 𝑅2, i.e.
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• 𝔻𝑒𝑣ℝ𝑒𝑔(y) = 𝑅2𝔻𝑒𝑣(y).
• 𝔻𝑒𝑣𝔻𝑖𝑠𝑝(y) = (1 − 𝑅2)𝔻𝑒𝑣(y).

it is possible to express the 𝐹 -test in terms of the multivariate 𝑅2 as:

𝐹 = 𝑅2

1 − 𝑅2
𝑛 − 𝑘 − 1

𝑘 ∼ F𝑘,𝑛−𝑘−1

14.5.2 t-test

The 𝑡-test evaluates the significance of the one regression parameter by testing the null hy-
pothesis of linear independence between y and X𝑗 given the effect of the others 𝑘−1
regressors, i.e.

𝐻0 ∶ ̂𝑏𝑗 = 𝑏𝑗

If the normality of the residuals holds true, then b̂ is a multivariate normal and so ̂𝑏𝑗 is
normally distributed. Standardizing:

𝑡 =
̂𝑏𝑗 − 𝑏𝑗

√𝜎2𝑒 ⋅ 𝑐𝑗𝑗
∼ 𝒩(0, 1) (14.11)

Under 𝐻0 and substituting 𝜎2
𝑒 with it’s correct estimate �̂�2

𝑒 , then

𝑡 𝐻0= �̂�𝑗

√�̂�2𝑒 ⋅ 𝑐𝑗𝑗
∼ 𝑡𝑛−𝑘−1

14.5.3 Confidence intervals

From Equation 14.11 it is possible to build an interval with confidence level 𝛼 for 𝑏𝑗 as:

𝑏𝑗 = �̂�𝑗 ± 𝑡𝛼/2,𝑛−𝑘−1√𝜎2𝑒 ⋅ 𝑐𝑗𝑗

= �̂�𝑗 ± 𝑡𝛼/2,𝑛−𝑘−1√𝕍{ ̂𝑏𝑗|X}

where 𝑡𝛼/2,𝑛−𝑘−1 is the quantile at level 𝛼/2 of a Student-t distribution with 𝑛 − 𝑘 − 1 degrees
of freedom and 𝑐𝑗𝑗 is the 𝑗-th element on the diagonal of (X⊤X)−1.
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15 Generalized least square

15.1 Working hypothesis

The assumptions of the generalized least square regression are:

1. 𝔼{𝑦𝑖|x1, … , x𝑛} = 𝔼{𝑦𝑖|X} = x⊤
𝑖 b.

2. 𝕍{𝑦𝑖|x1, … , x𝑛} = 𝕍{𝑦𝑖|X} = 𝜎2
𝑖 with 0 < 𝜎2

𝑖 < ∞.
3. ℂ𝑣{𝑦𝑖, 𝑦𝑗|x1, … , x𝑛} = ℂ𝑣{𝑦𝑖, 𝑦𝑗|X} = 𝜎𝑖𝑗

equivalently the formulation in terms of the stochastic component u reads

1. 𝑦𝑖 = x⊤
𝑖 b + 𝑒𝑖 for 𝑖 = 1, … 𝑛.

2. 𝔼{𝑒𝑖|x1, … , x𝑛} = 𝔼{𝑒𝑖|X} = 0.
3. 𝕍{𝑒𝑖|x1, … , x𝑛} = 𝕍{𝑒𝑖|X} = 𝜎2

𝑖 with 0 < 𝜎2
𝑖 < ∞.

4. ℂ𝑣{𝑒𝑖, 𝑒𝑗|x1, … , x𝑛} = ℂ𝑣{𝑒𝑖, 𝑒𝑗|X} = 𝜎𝑖𝑗

In this case the variance covariance matrix Σ is defined as in Equation 13.3 and contains the
variances and the covariances between the observations.

15.2 Generalized least squares estimator

Proposition 15.1. (Generalized Least Squares (GLS))
The generalized least squares estimator (GLS) is the function 𝑄 that minimize the weighted
sum of the squared residuals and return an estimate of the true parameter b, i.e. b̂ = bGLS.
The GLS optimization problem reads:

argmin
bGLS∈Θb

𝑄(bGLS) = argmin
bGLS∈Θb

{e(bGLS)⊤Σ−1e(bGLS)} (15.1)

Notably, if X and Σ are non-singular it is possible to recover an analytic solution, i.e.

bGLS = (X⊤Σ−1X)−1X⊤Σ−1y (15.2)
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Singularity of X or Σ

The solution is available if and only if X and Σ are non-singular. In practice the
conditions are:

1. 𝑟𝑎𝑛𝑘(Σ) = max = 𝑛 for the inversion of Σ.
2. 𝑟𝑎𝑛𝑘(X) = max = 𝑘 and condition 1. for the inversion of X⊤Σ−1X.

Generalized Least Square (GLS)

Proof. Let’s prove the optimal solution in Proposition 15.1. Developing the optimization
problem in Equation 15.1:

𝑄(bGLS) = e(bGLS)⊤Σ−1e(bGLS) =
= (y − XbGLS)⊤Σ−1(y − XbGLS) =
= y⊤Σ−1y − 2(bGLS)⊤X⊤Σ−1y + (bGLS)⊤X⊤Σ−1XbGLS

In order to find the minimum, let’s compute the derivative with respect to bGLS of 𝑄
and setting it equal to zero, i.e.

𝑑Q(bGLS)
𝑑bOLS = −2X⊤Σ−1y + 2X⊤Σ−1XbGLS = 0

⟹ X⊤Σ−1y = X⊤Σ−1XbGLS

⟹ bGLS = (X⊤Σ−1X)−1X⊤Σ−1y

15.3 Properties GLS

Theorem 15.1. (Aikten theorem)
Under the hypothesis of the Generalized linear models the Generalized Least Square (GLS) esti-
mate is BLUE (Best Linear Unbiased Estimator), where “best” stands for the estimator
with minimum variance in the class of linear unbiased estimators of b. The Aikten hypothesis
are:

1. y = Xb + e.
2. 𝔼{e} = 0.
3. 𝔼{ee⊤} = Σ, i.e. heteroskedastic and correlated errors.
4. X is non-stochastic and independent from the errors e for all 𝑛’s.
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Proposition 15.2. (Properties GLS estimator)

1. Unbiased: bGLS is correct and it’s conditional expectation is equal to true parameter in
population, i.e.

𝔼{bGLS|X} = b (15.3)

2. Linear in the sense that it can be written as a linear combination of y and X,
i.e. bGLS = Axy, where Ax do not depend on y, i.e.

bGLS = Axy Ax = (X⊤Σ−1X)−1X⊤Σ−1 (15.4)

3. Under the Aikten hypothesis (Theorem 15.1) it has minimum variance in the class of
the unbiased linear estimators and it reads:

𝕍{bGLS|X} = (X⊤Σ−1X)−1 (15.5)

Properties of the GLS estimator

Proof.

• The GLS estimator is correct. It’s expected value is computed from Equation 15.2
and substituting Equation 13.1, is equal to the true parameter in population, i.e.

𝔼{bGLS|X} = 𝔼{(X⊤Σ−1X)−1X⊤Σ−1y} =
= 𝔼{(X⊤Σ−1X)−1X⊤Σ−1(Xb + e)} =
= (X⊤Σ−1X)−1X⊤Σ−1Xb + (X⊤Σ−1X)−1X⊤Σ−1𝔼{e|X} =
= b

(15.6)

• Under the assumption of heteroskedastic and correlated observations the condi-
tional variance of bGLS follows similarly as for the OLS case (Equation 14.10) but
with 𝕍{e|X} = Σ, i.e.

𝕍{bGLS|X} = (X⊤X)−1X⊤Σ−1𝕍{e|X} Σ−1X(X⊤X)−1 =
= (X⊤Σ−1X)−1X⊤Σ−1ΣΣ−1X(X⊤Σ−1X)−1 =
= (X⊤Σ−1X)−1X⊤Σ−1X(X⊤Σ−1X)−1 =
= (X⊤Σ−1X)−1

(15.7)

where Equation 14.9 become a special case of Equation 15.7 where Σ = 𝜎2
𝑒I𝑛.
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15.4 Alternative derivation

Let’s consider a linear model of the form y = Xb + 𝜀 and a transformation matrix T𝑛×𝑛.
Multiplying on both sides by T, the model can be rewritten as follows:

T y = TX b + T𝜀
⇓ ⇓ ⇓
ỹ = X̃ b + ̃𝜀

The conditional mean of the transformed models reads as:

𝔼{ỹ|X̃} = X̃ b

while it’s conditional variance

𝕍{ỹ|X̃} = 𝕍{ ̃𝜀|X̃} = T Σ T⊤

The idea is to identify a transformation matrix T such that the conditional variance became
equal to the identity matrix, i.e. 𝕍{ ̃𝜀|X̃} = I𝑛. In this way it is possible to work under the
Gauss-Markov assumptions obtaining an estimator with minimum variance. Let’s decompose
the variance-covariance matrix (Equation 13.3) as

Σ = e Λ e𝑇

where

• Λ is the diagonal matrix containing the eigenvalues.
• e is the matrix with the eigenvectors that satisfy the following relation, i.e. e⊤e = ee⊤ =

J𝑛.

Setting the transformation matrix as T = Λ−1/2 e⊤ gives that the conditional variance is
equal to 1 for all the observations, i.e.

𝕍{ ̃𝜀|X̃} = T Σ T⊤ =
= (Λ−1/2 e⊤) e Λ e⊤ (e Λ−1/2) =
= Λ−1/2Λ Λ−1/2 = J𝑛

Moreover, the matrix T = Λ−1/2 e⊤ satisfies the product:

T⊤T = e Λ−1/2Λ−1/2e⊤ = e Λ−1e⊤ = Σ−1 (15.8)

Finally, substituting X̃ = TX in the OLS formula (Equation 14.2) and using the result Equa-
tion 15.8 one obtain exactly the GLS estimator in Equation 15.2, i.e.

b̃ = (X̃⊤X̃)−1X̃⊤ỹ =
= (X⊤T⊤TX)−1X⊤T⊤Ty =
= (X⊤Σ−1X)−1X⊤Σ−1y
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15.5 Models with heteroskedasticity

15.5.1 Working hypothesis

The assumptions of the generalized linear model with heteroskedastic errors are:

1. 𝔼{𝑦𝑖|x1, … , x𝑛} = 𝔼{𝑦𝑖|X} = x⊤
𝑖 b.

2. 𝕍{𝑦𝑖|x1, … , x𝑛} = 𝕍{𝑦𝑖|X} = 𝜎2
𝑖 with 0 < 𝜎2

𝑖 < ∞.
3. ℂ𝑣{𝑦𝑖, 𝑦𝑗|x1, … , x𝑛} = ℂ𝑣{𝑦𝑖, 𝑦𝑗|X} = 0

equivalently the formulation in terms of the stochastic component

1. 𝑦𝑖 = x⊤
𝑖 𝛽 + 𝑒𝑖 for 𝑖 = 1, … 𝑛.

2. 𝔼{𝑒𝑖|x1, … , x𝑛} = 𝔼{𝑒𝑖|X} = 0.
3. 𝕍{𝑒𝑖|x1, … , x𝑛} = 𝕍{𝑒𝑖|X} = 𝜎2

𝑖 with 0 < 𝜎2
𝑖 < ∞.

4. ℂ𝑣{𝑒𝑖, 𝑒𝑗|x1, … , x𝑛} = ℂ𝑣{𝑒𝑖, 𝑒𝑗|X} = 0

For an heteroskedastic linear model the variance-covariance matrix of the residuals in matrix
notation is written as:

Σ
𝑛×𝑛

=
⎛⎜⎜⎜⎜
⎝

𝜎2
1 0 … 0

0 𝜎2
2 … 0

⋮ ⋮ ⋮
0 0 … 𝜎2

𝑛

⎞⎟⎟⎟⎟
⎠

= diag (𝜎2
1, 𝜎2

2, … , 𝜎2
𝑛)
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16 Restricted linear models

16.1 A general framework for linear restrictions

Let’s consider a generic uni-variate linear model with 𝑘-regressors, namely
y = 𝑏1X1 + ⋯ + 𝑏𝑗X𝑗 + ⋯ + 𝑏𝑘X𝑘 + e = bX + e

and suppose that we are interest in testing if the 𝑏𝑗 coefficient is statistically different from a
certain known value 𝑟. In this case the null hypothesis, that is 𝐻0 ∶ 𝑏𝑗 = 𝑟, can be equivalently
represented using a more flexible matrix notation, i.e.

𝐻0 ∶ 𝑏𝑗 = 𝑟 ⟺ 𝐻0 ∶ R⊤b − r = 0
where

R
𝑘×1

⊤ = (0 … 1 … 0)
𝑗-th position

Hence, the linear restriction in matrix form reads explicitly as

𝐻0 ∶ R
𝑘×1

⊤ b
𝑘×1

− r
1×1

= 0
1×1

⟺ (0 … 1 … 0)
𝑗-th position

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑏1
⋮

𝑏𝑗
⋮

𝑏𝑘

⎞⎟⎟⎟⎟⎟⎟
⎠

− (𝑟) = (0)

16.2 Multiple restrictions

Let’s consider a linear model of the form
y = 𝑏1X1 + 𝑏2X2 + 𝑏3X3 + 𝑏4X4

and suppose that the aim is to test at the same time the following null hypothesis, i.e.
𝐻0 ∶ (1) 𝑏1 − 𝑏2 = 0 𝑏1 and 𝑏2 has same effect

(2) 𝑏3 + 𝑏4 = 1 𝑏3 plus 𝑏4 unitary root
Let’s construct the vector for (1) (first column of 𝑅) and (2) (first column of 𝑅), i.e.

R
2×4

⊤ b
4×1

− r
2×1

= 0
2×1

⟺ (1 −1 0 0
0 0 1 1)

⎛⎜⎜⎜⎜
⎝

𝑏1
𝑏2
𝑏3
𝑏4

⎞⎟⎟⎟⎟
⎠

− (0
1) = (0

0)
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16.3 Restricted least squares

Proposition 16.1. Let’s consider a set of 𝑚 linear hypothesis on the parameters of the model
taking the form

𝐻0 ∶ R
𝑚×𝑘

⊤ b
𝑘×1

− r
𝑚×1

= 0
𝑚×1

Then the parameters that satisfies the condition are no more in Θb but in a subset Θ̃b where
the linear constraint holds true, i.e.

Θ̃b = {b ∈ ℝ𝑘 ∶ R⊤b − r = 0}

Hence, the optimization problem is restricted to search only the parameters that satisfy the
constraint, i.e.

argmin
bRLS∈Θ̃b

𝑄(bRLS) = argmin
bRLS∈Θ̃b

{e(bRLS)𝑇 e(bRLS)} (16.1)

Notably, it is available an analytic solution for bRLS, i.e.

bRLS = bOLS − (X𝑇 X)−1R [R𝑇 (X𝑇 X)−1R]−1 (R𝑇 bOLS − r) (16.2)

Restricted Least Square (RLS)

Proof. In order to solve the minimization problem in Equation 16.1, let’s construct the
Lagrangian 𝐿(𝑥, 𝜆), i.e.

𝐿(𝑥, 𝜆) = 𝑓(𝑥) − 𝜆⊤𝑔(𝑥),
where 𝜆 is the vector of the Lagrange multipliers. Minimizing 𝐿(𝑥, 𝜆) is equivalent
to find the value of 𝑥 that minimize 𝑓(𝑥) under the constraint 𝑔(𝑥) = 0. In fact, it is
possible to prove that the minimum is found as:

argmin
𝑥∈𝜒

𝐿(𝑥, 𝜆) ⟹ {(𝐴) 𝜕𝑥𝐿(𝑥, 𝜆) = 0
(𝐵) 𝜕𝜆𝐿(𝑥, 𝜆) = 0 (16.3)

In the case of RLS estimate the Lagrangian reads:

𝐿(bRLS, 𝜆) = 𝑄(bRLS) − 2𝜆⊤(R⊤bRLS − r),

where 𝑄 is the same loss function defined for the OLS case (Equation 14.4) and 2 is a
constant. Then, from Equation 16.3 one obtain the following system of equation, i.e.

{(𝐴) 𝜕bRLS𝐿(bRLS, 𝜆) = −2X⊤y + 2X⊤XbRLS − 2R𝜆 = 0
(𝐵) 𝜕𝜆𝐿(bRLS, 𝜆) = −2(R⊤bRLS − r) = 0
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Let’s explicit bRLS from (A), i.e.

bRLS = (X⊤X)−1X⊤y − (X⊤X)−1R𝜆 =
= bOLS − (X⊤X)−1R𝜆 (16.4)

Let’s now substitute Equation 16.4 in (B), i.e.

R⊤bRLS − r = 0
⟹ R⊤ [bOLS − (X⊤X)−1R𝜆] − r = 0
⟹ R⊤bOLS − R⊤(X⊤X)−1R𝜆 − r = 0
⟹ R⊤bOLS − r = [R⊤(X⊤X)−1R] 𝜆

Hence, it is possible to explicit the Lagrange multipliers 𝜆 as:

𝜆 = [R⊤(X⊤X)−1R]−1 (R⊤bOLS − r) (16.5)

Finally, substituting Equation 16.5 in Equation 16.4 gives the optimal solution, i.e.

bRLS = bOLS − (X⊤X)−1R𝜆 =
= bOLS − (X⊤X)−1R [R⊤(X⊤X)−1R]−1 (R⊤bOLS − r)

Note that if constraints hold true in the OLS estimate, 𝐻0 is true and therefore R⊤bOLS−
r = 0. Hence the RLS and OLS parameters are the same, i.e. bRLS = bOLS.

16.4 Properties RLS

1. The RLS estimator is correct if and only if the restriction imposed by 𝐻0 is true in
population. In fact, it’s expected value is computed as:

𝔼{bRLS ∣ X} = b − (X⊤X)−1R [R⊤(X⊤X)−1R]−1 (R⊤b − r) (16.6)

and it is correct if and only if the second component is zero, i.e. if 𝐻0 holds true.

Correctness of RLS estimator

Proof. Let’s apply the expected value on Equation 16.2 remembering that X, R and r are
non-stochastic and that bOLS is correct (Equation 14.7). Developing the computations
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gives:

𝔼{bRLS ∣ X} = 𝔼{bOLS ∣ X} − 𝔼 {(X⊤X)−1R [R⊤(X⊤X)−1R]−1 (R⊤bOLS − r) ∣ X} =

= b − (X⊤X)−1R [R⊤(X⊤X)−1R]−1 (R⊤𝔼{bOLS ∣ X} − r) =
= b − (X⊤X)−1R [R⊤(X⊤X)−1R]−1 (R⊤b − r)

Hence bRLS is correct if and only if the restriction holds in population.

𝔼{bRLS ∣ X} = b ⟺ R⊤b − r = 0

16.5 A test for linear restrictions

In order to build a test for the linear restriction imposed by R⊤b − r = 0, it is necessary that
the stochastic component e is normally distributed. Under normality:

bOLS ∼ 𝒩(b, 𝜎2
𝑒(X⊤X)−1)

Then, let’s consider the hull hypothesis 𝐻0 and the alternative 𝐻1, i.e.

𝐻0 ∶ R⊤bOLS − r = 0 vs 𝐻1 ∶ R⊤bOLS − r ≠ 0
Using the scaling property of the multivariate normal:

R⊤bOLS − r ∼ 𝒩(R⊤b − r, 𝜎2
𝑒R⊤(X⊤X)−1R)

Remembering the connection between the distribution of the quadratic form of a multivariate
normal and the 𝜒2 distribution in in property 3. (Section 33.1.2) one obtain the following
statistic:

𝑇𝑞 = (R⊤b − r)⊤(𝜎2
𝑒R⊤(X⊤X)−1R)−1(R⊤b − r) (16.7)

that under 𝐻0 is distributed as a 𝜒2
𝑞 where 𝑞 is the number of linear restrictions, i.e.

𝑇𝑞
𝐻0∼ 𝜒2(𝑞) (16.8)

Instead, under 𝐻1 it is possible to use the result in property 4. (Section 33.1.2) to show that
the statistic 𝑇𝑞 is distributed as a non central 𝜒2(𝑞, 𝛿), i.e.

𝑇𝑞
𝐻1∼ 𝜒2(𝑞, 𝛿) (16.9)

where the non centrality parameter 𝛿 is computed as:

𝛿 = (R⊤b − r)⊤(𝜎2
𝑒R⊤(X⊤X)−1R)−1(R⊤b − r)
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As general decision rule 𝐻0 is rejected if the statistic in Equation 16.8 is greater than the
quantile with confidence level 𝛼 of a 𝜒2(𝑞) random variable. Such critic value, denoted with
𝜒2

𝛼(𝑞) represents the value for which the probability that a 𝜒2(𝑞) is greater than the value
𝜒2

𝛼(𝑞) is exactly 𝛼, i.e.
ℙ(𝜒2

𝑞 > 𝑥𝛼) = 𝛼
In this case the probability to have an error of type I, i.e. rejecting 𝐻0 when 𝐻0 is true is
exactly 𝛼.
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17 Multiequationals linear models

Let’s consider a multivariate linear model, i.e. with 𝑝 > 1 in (Equation 12.3), then the model
in matrix notation reads:

𝑌
𝑛×𝑝

= J𝑛,1
𝑛×1

𝑎⊤
1×𝑝

+ 𝑋
𝑛×𝑘

𝑏⊤
𝑘×𝑝

+ 𝑒
𝑛×𝑝

17.1 OLS estimate

As in the uni-variate case the optimal parameters are computed as:

bOLS = ℂ𝑣(𝑌 , 𝑋) ℂ𝑣(𝑋)−1

𝛼OLS = 𝔼{𝑌 } − bOLS 𝔼{𝑋}

And the variance covariance matrix of the residuals is computed as:

Σ = ℂ𝑣(𝑒) = ℂ𝑣(𝑌 ) − bOLS ℂ𝑣(𝑌 , 𝑋)

17.1.1 Example

Let’s consider 𝑛-simulated observations of the explicative variables X drown from a multivari-
ate normal, i.e. X ∼ 𝒩(𝔼{𝑋}, ℂ𝑣{𝑋}), with parameters

𝔼{𝑋} = ⎛⎜
⎝

0.5
0.5
0.5

⎞⎟
⎠

ℂ𝑣{𝑋} = ⎛⎜
⎝

0.5 0.2 0.1
0.2 1.2 0.1
0.1 0.1 0.3

⎞⎟
⎠

Let’s consider two dependent variables, hence 𝑝 = 2 and 𝑘 = 3. Let’s now simulate the
𝑝 × 𝑘 = 6 slopes parameter drown from a standard normal, i.e. for 𝑗 = 1, … , 6, 𝑏𝑗 ∼ 𝒩(0, 1).
The intercept parameters a are simulated drown from a uniform distribution in [0,1]. In the
multivariate case a and b became matrices, i.e.

b
𝑝×𝑘

= (𝑏1,1 𝑏1,2 𝑏1,3
𝑏2,1 𝑏2,2 𝑏2,3

) 𝛼
𝑝×1

= (𝛼1
𝛼2

)
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Table 17.1: Fitted parameters

Type 𝛽1 𝛽2 𝛽3

True 0.8500 -0.9253 0.8936
True -0.9410 0.5390 -0.1820
Fitted 0.8457 -0.8699 0.9396
Fitted -0.9532 0.5518 -0.1804

Type 𝛼1 𝛼2

True 0.8137 0.8068
Fitted 0.7942 0.7423

For 𝑖 = 1, … , 𝑛, let’s consider a model of the form:

{𝑌𝑖,1 = 𝛽0,1 + 𝛽1,1𝑋𝑖,1 + 𝛽1,2𝑋𝑖,2 + 𝛽1,𝑘𝑋𝑖,3 + 𝑢𝑖,1
𝑌𝑖,2 = 𝛽0,2 + 𝛽2,1𝑋𝑖,1 + 𝛽2,2𝑋𝑖,2 + 𝛽2,𝑘𝑋𝑖,3 + 𝑢𝑖,2

where 𝑢𝑖,1 and 𝑢𝑖,2 are simulated from a multivariate normal random variables with true
covariance matrix equal to:

ℂ𝑣{u} = (0.55 0.3
0.3 0.70)

Hence, the procedure is structured as:

1. Simulate of the explanatory variables, the regression parameters and the residuals.
2. Simulate the perturbed Ỹ (regression with errors).
3. Fit the regression parameters on the Ỹ.

4. Compute the fitted residuals from the prediction obtained with the parameters in step
3. and compute their variance covariance matrix.

5. Compare the results with the true parameters.
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Part IV

Time Series
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18 Time series

Let {𝑦𝑡}𝑡∈𝒯 be a time series or stochastic process, i.e., a collection of random variables indexed
by a set of time indices 𝒯. For each 𝑡 ∈ 𝒯, define the filtration ℱ𝑡 as the information available
up to time t, i.e.

ℱ𝑡 = 𝜎(𝑦0, 𝑦1, … , 𝑦𝑡).
That is, ℱ𝑡 is the smallest 𝜎-algebra containing all events observable up to time t. In more
informal settings (when avoiding measure-theoretic details), we can write:

ℱ𝑡 = {𝑦0, 𝑦1, … , 𝑦𝑡}.

The filtration {ℱ𝑡}𝑡∈𝒯 is formally defined as an increasing sequence of 𝜎-algebras:

ℱ0 = {𝑦0}
ℱ1 = ℱ0 ∪ {𝑦1} = {𝑦0, 𝑦1}
ℱ2 = ℱ1 ∪ {𝑦2} = {𝑦0, 𝑦1, 𝑦2}
⋮

ℱ𝑡 = ℱ𝑡−1 ∪ {𝑦𝑡} = {𝑦0, 𝑦1, … , 𝑦𝑡}

and represent the information set.

18.1 Stationarity

Definition 18.1. (Strongly stationary)
A process {𝑦𝑡}𝑡∈𝒯 is strongly stationary if and only if for all set of index {𝑡1, 𝑡2, … , 𝑡𝑛} ∈ 𝒯
and for every ℎ > 0

ℙ(𝑦𝑡1
, 𝑦𝑡2

, … , 𝑦𝑡𝑛
) = ℙ(𝑦𝑡1+ℎ

, 𝑦𝑡2+ℎ
, … , 𝑦𝑡𝑛+ℎ

).

Hence, the joint distribution of a strongly stationary process is invariant with respect to a shift
ℎ in time.

Definition 18.2. (Weakly stationary)
A process {𝑦𝑡}𝑡∈𝒯 is called weakly stationary or covariance stationary if and only if for
every 𝑡 and 𝑘:
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1. 𝔼{𝑦𝑡} = 𝜇 and |𝜇| < ∞.
2. ℂ𝑣{𝑦𝑡, 𝑦𝑡+𝑘} = 𝛾(𝑘) and |𝛾(𝑘)| < ∞.

Hence, for a weakly stationary process, the expectation, variance are finite and constant and
the covariance 𝛾(𝑘) do not depends on time 𝑡, but only on the lag 𝑘 between two observations.

Strong does not imply weakly and viceversa

In general if a process is strong stationary (Definition 18.1) does not implies auto-
matically that it is also weakly stationary. For example, an independent and identically
Cauchy distributed process is strongly stationary, but since its expectation and variance
are not finite the process is not weakly stationary.

18.2 Notable processes

Definition 18.3. (IID process)
A time series, {𝑢𝑡}𝑡∈𝒯 where each 𝑢𝑡 is independent from the others and all 𝑢𝑡 has the same
distribution for all 𝑡 is called independent and identically distributed process (IID). Such kind of
process, usually denoted as 𝑢𝑡 ∼ IID(0, 𝜎2

𝑢), is strongly stationary (Definition 18.1). Moreover,
if the mean and variance are finite, the covariance is zero and the process is also weakly
stationary (Definition 18.2), i.e.

𝛾𝑡(𝑘) = ℂ𝑣{𝑦𝑡, 𝑦𝑡+𝑘} = 𝔼{𝑦𝑡𝑦𝑡+𝑘} = 𝔼{𝑦𝑡}𝔼{𝑦𝑡+𝑘} = 0.

Definition 18.4. (White noise)
A time series 𝑢𝑡𝑡∈𝒯, commonly denoted as

𝑢𝑡 ∼ WN(0, 𝜎2
𝑢). (18.1)

is called White Noise if satisfies the following properties:

1. The expectation is equal to zero, i.e. 𝔼{𝑢𝑡} = 0 for all 𝑡 ∈ 𝒯.
2. The variance is finite and constant for all 𝑡 ∈ 𝒯, i.e. 𝕍{𝑢𝑡} = 𝜎2

𝑢 < ∞.
3. The process is uncorrelated over time for all 𝑡 ≠ 𝑠, i.e. ℂ𝑣{𝑢𝑡, 𝑢𝑠} = 0.

A White Noise process is weakly stationary (Definition 18.2). In fact, the autocovariance
function of the process depends on the lag, but not on time, i.e. it is equal to the variance for
𝑡 = 𝑠 and is zero otherwise. This process is more general than an IID process (Definition 18.3),
since it does not requires the stochastic independence of the time series for all 𝑡.
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Definition 18.5. (Martingale difference sequence) Let 𝑢𝑡𝑡 ∈ 𝒯 be a stochastic process
and let ℱ𝑡𝑡 ∈ 𝒯 be a filtration such that ℱ𝑡 − 1 represents the information available up to
time 𝑡 − 1. Then 𝑢𝑡 is said to be a martingale difference sequence (MDS) with respect to the
filtration ℱ𝑡 if

𝔼{𝑢𝑡 ∣ ℱ𝑡−1} = 0 ∀𝑡 ∈ 𝒯. (18.2)

This implies that 𝑢𝑡 is a mean-zero process uncorrelated with any information contained ℱ𝑡−1.
The definition can be extended to a case where the filtration ℱ𝑡−1 includes also other pro-
cesses 𝑋. In this case, 𝑢𝑡 is said to be an MDS conditionally to 𝑋 if the same condition in
Equation 18.2 holds.

18.3 Lag operator

The lag operator 𝐿 is a function that allows to translate a time series in time. In general, the
lag operator associate at 𝑦𝑡 it’s lagged value 𝑦𝑡−1, i.e.

𝐿(𝑦𝑡) = 𝑦𝑡−1. (18.3)

More formally, 𝐿 is the operator that takes one whole time series and produces another; the
second time series is the same as the first, but moved backwards or forward one point in time.
From the definition, we list some properties related to the Lag operator, i.e.

1. Backward 𝐿𝑘(𝑦𝑡) = 𝑦𝑡−𝑘.
2. Forward 𝐿−𝑘(𝑦𝑡 = 𝑦𝑡+𝑘.
3. 𝐿(𝑎𝑦𝑡 + 𝑏𝑥𝑡) = 𝑎𝑦𝑡−1 + 𝑏𝑥𝑡−1.

18.3.1 Polynomial of Lag operator

Given a time series 𝑦𝑡, it is possible to define polynomials of the Lag operator, i.e.

𝜙(𝐿)𝑦𝑡 = 𝑦𝑡 + 𝜙1𝑦𝑡−1 + ⋯ + 𝜙𝑘𝑦𝑡−𝑝 =
𝑝

∑
𝑖=0

𝜙𝑖𝑦𝑡−𝑖.

where in general

𝜙(𝐿) = 1 + 𝜙1𝐿 + 𝜙2𝐿2 + ⋯ + 𝜙𝑝𝐿𝑝 =
𝑝

∑
𝑗=0

𝜙𝑗𝐿𝑗. (18.4)

For the polynomial 𝜙(𝐿) holds the factorization

𝜙(𝐿) = (1 − 1
𝑧1

𝐿) (1 − 1
𝑧2

𝐿) … (1 − 1
𝑧𝑘

𝐿) =
𝑘

∏
𝑖=1

(1 − 1
𝑧𝑖

𝐿) ,
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where 𝑧1, … , 𝑧𝑘 are the complex solutions of the characteristic equation, i.e.

𝜙(𝑧) = 1 + 𝜙1𝑧 + 𝜙2𝑧2 + ⋯ + 𝜙𝑘𝑧𝑘 = 0.

Hence the factorization holds true if and only if:

|𝑧𝑖| > 1 ∀𝑖 ⟺ 1
|𝑧𝑖|

< 1.

In other words, the modulus of the solutions must outside the unit circle, otherwise the geomet-
ric series is not convergent and the factorization do not holds true anymore. The factorization
of the lag polynomial allows us to define its inverse, i.e.

𝜙−1(𝐿) =
𝑝

∏
𝑖=1

(1 − 1
𝑧𝑖

𝐿)
−1

,

In fact, the inverse of the 𝑖-th term can be expressed with a Taylor expansion as infinite sum
if and only if |𝜙𝑖| < 1, i.e.

(1 − 𝜙𝑖𝐿)−1 = 1 + 𝜙𝑖𝐿 + (𝜙𝑖𝐿)2 + ⋯ =
∞

∑
𝑗=0

𝜙𝑗
𝑖𝐿𝑗 ⟺ |𝜙𝑖| < 1.

that is equivalent to |𝑧𝑖| > 1 for all 𝑖 since 𝜙𝑖 = 1
𝑧𝑖

.

AR(1) and geometric series

For example, let’s consider an Autoregressive process of order 1, i.e.

𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝑒𝑡 ⟺ 𝜙(𝐿)𝑦𝑡 = 𝑒𝑡 ⟺ 𝑦𝑡 = 𝜙−1(𝐿)𝑒𝑡

In fact,
𝜙(𝐿)𝑦𝑡 = 𝑦𝑡 − 𝜙1𝑦𝑡−1 =

= 𝑦𝑡 − 𝜙1𝑦𝑡𝐿 =
= 𝑦𝑡(1 − 𝜙1𝐿)

Considering such polynomial, its inverse polynomial 𝜙(𝐿)−1, defined such that
𝜙(𝐿)𝜙−1(𝐿) = 1, is defined as geometric series, i.e.

𝜙−1(𝐿) = 1 + 𝜙1𝐿 + (𝜙1𝐿)2 + ⋯ =
∞

∑
𝑗=0

𝜙𝑗
1𝐿𝑗 = 1

1 − 𝜙1𝐿 ⟺ |𝜙1| < 1,

that converges if and only if |𝜙1| < 1. Moreover, if |𝜙1| < 1 it is possible to prove that
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𝜙−1(𝐿) is indeed the inverse polynomial of 𝜙(𝐿), in fact:

𝜙(𝐿)𝜙−1(𝐿) = (1 − 𝜙1𝐿) ⋅
∞

∑
𝑗=0

(𝜙1𝐿)𝑗 =

=
∞

∑
𝑗=0

(𝜙1𝐿)𝑗 − 𝜙1𝐿
∞

∑
𝑗=0

(𝜙1𝐿)𝑗 =

=
∞

∑
𝑗=0

(𝜙1𝐿)𝑗 −
∞

∑
𝑗=0

(𝜙1𝐿)𝑗+1 =

=
∞

∑
𝑗=0

(𝜙1𝐿)𝑗 −
∞

∑
𝑗=0

(𝜙1𝐿)𝑗 + 1 = 1

Therefore, the process 𝑦𝑡 can be equivalently expressed as:

𝑦𝑡 = 𝜙−1(𝐿)𝑒𝑡 =
∞

∑
𝑗=0

𝜙𝑗
1𝑒𝑡−𝑗

The factorization of any polynomial of the form of 𝜙(𝐿) is connected to the convergence
of the following geometric series, i.e.

∞
∑
𝑗=0

𝜙𝑗 = 1
1 − 𝜙 ⟺ |𝜙| < 1.

3.333

1.0

1.5

2.0

2.5

3.0

0 2 4 6 8 10 12 14 16 18
i

∑ i=
0∞
ai

(a) 0 < 𝑎 < 1.

0.588

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16 18
i

(b) −1 < 𝑎 < 0.

Figure 18.1: Convergent series for AR(1) parameter (I).

Another important series that is convergent only if and only if |𝑎| < 1, i.e.
∞

∑
𝑖=0

𝑎2𝑖 = 1
1 − 𝑎2 ⟺ |𝑎| < 1.
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Due to the square, in this case we do not distinguish between 0 < 𝑎 < 1 and −1 < 𝑎 < 0
since they lead to the same result.

1.961

1.00

1.25

1.50

1.75

2.00

0 2 4 6 8 10 12 14 16 18
i

∑ i=
0∞
a2i

|a| < 1

Figure 18.2: Convergent series for AR(1) parameter (II).
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19 MA and AR processes

19.1 MA(q)

In time series analysis an univariate time series 𝑦𝑡 is defined as Moving Average process with
order q (MA(q)), when it satisfy the equations of the differences, i.e.

𝑦𝑡 = 𝑢𝑡 + 𝜃1𝑢𝑡−1 + ⋯ + 𝜃𝑞𝑢𝑡−𝑞, (19.1)

where 𝑢𝑡 ∼ WN(0, 𝜎2
𝑢). An MA(q) process can be equivalently expressed as a polynomial in 𝜃

of the Lag operator (Equation 18.4), i.e.

𝑦𝑡 = Θ(𝐿)𝑢𝑡, 𝑢𝑡 ∼ WN(0, 𝜎2
𝑢),

where Θ(𝐿) is a polynomial of the form Θ(𝐿) = 1 + 𝜃1𝐿 + ⋯ + 𝜃𝑞𝐿𝑞. Given this representation
it is clear that an MA(q) process is stationary independently on the value of the parame-
ters. Moreover, the stationary process 𝑦𝑡 admits has a infinite moving average or MA(∞)
representation (see Wold (1939)) if it satisfies the equations of differences, i.e.

𝑦𝑡 = Ψ(𝐿)𝑢𝑡 = 𝑢𝑡 + 𝜓1𝑢𝑡−1 + ⋯ =
∞

∑
𝑖=1

𝜓𝑗𝑢𝑡−𝑗,

under the following condition the process is stationary and ergodic, i.e.
∞

∑
𝑖=1

|𝜓𝑗| < ∞.

If the above condition holds, then the process MA(∞) can be written in compact form as:

𝑦𝑡 = Ψ(𝐿)𝑢𝑡, 𝑢𝑡 ∼ WN(0, 𝜎2
𝑢), Ψ(𝐿) =

∞
∑
𝑖=1

𝜓𝑗𝐿𝑗

19.1.1 Expectation

Proposition 19.1 (Expectation of an MA(q)). In general, the expected value of an MA(q)
process depends on the distribution of 𝑢𝑡. Under the standard assumption that 𝑢𝑡 is a White
Noise (Equation 18.1), then it’s expected value is equal to zero for every 𝑡, i.e.

𝔼{𝑦𝑡} =
𝑞

∑
𝑖=0

𝜃𝑖𝔼{𝑢𝑡−𝑖} = 0.
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Proof: Proposition 19.1

Proof. Given a process 𝑦𝑡 such that 𝔼{𝑦𝑡} = 𝜇, it is always possible to simply
reparametrize the Equation 19.1 as:

𝑦𝑡 = 𝜇 + 𝑢𝑡 + 𝜃1𝑢𝑡−1 + ⋯ + 𝜃𝑞𝑢𝑡−𝑞,

or rescale the process, i.e ̃𝑦𝑡 = 𝑦𝑡 − 𝜇, and work under a process with zero mean. Then,
let’s consider a process an MA process of order q, then the expectation of the process is
computed as

𝔼{𝑦𝑡} = 𝔼 {𝑢𝑡 +
𝑞

∑
𝑖=1

𝜃𝑖𝑢𝑡−𝑖} =
𝑞

∑
𝑖=0

𝜃𝑖𝔼{𝑢𝑡−𝑖} = 0 .

Hence, the expected value of 𝑦𝑡 depends on the expected value of the residuals 𝑢𝑡, that
under the White Noise assumption is zero for every 𝑡.

19.1.2 Autocovariance function

For every 𝑘 > 0, the autocovariance function, denoted as 𝛾𝑘, is defined as:

𝛾𝑘 = ℂ𝑣{𝑦𝑡, 𝑦𝑡−𝑘} = {𝜎2
𝑢 ∑𝑞−𝑘

𝑖=1 𝜃𝑖𝜃𝑖+𝑘 𝑘 ≤ 𝑞
0 𝑘 > 𝑞 .

The covariance is different from zero only when the lag 𝑘 is lower than the order of the process
𝑞. Setting 𝑘 = 0 one obtain the variance, i.e.

𝛾0 = 𝕍{𝑦𝑡} = 𝜎2
𝑢

𝑞
∑
𝑖=1

𝜃2
𝑖 .

It follows that, the autocorrelation function is bounded up to the lag 𝑞, i.e.

𝜌𝑘 = ℂ𝑟{𝑦𝑡, 𝑦𝑡−𝑘} =
⎧{{
⎨{{⎩

1 𝑘 = 0
𝜎2

𝑢 ∑𝑞−𝑘
𝑖=1 𝜃𝑖𝜃𝑖+𝑘

𝜎2𝑢(1+𝜃2
1+⋯+𝜃2𝑞) 0 < 𝑘 ≤ 𝑞

0 𝑘 > 𝑞

Proposition 19.2 (Moments of an MA(1)). Let’s consider a process 𝑦𝑡 ∼ MA(1), i.e.

𝑦𝑡 = 𝜇 + 𝜃1𝑢𝑡−1 + 𝑢𝑡.

Independently, from the specific distribution of 𝑢𝑡, the process has to be a White Noise, hence
with an expected value equal to zero. Therefore, the expectation of an MA(1) process is equal
to 𝜇, i.e. 𝔼{𝑦𝑡} = 𝜇. The variance instead is equal to

𝛾0 = 𝕍{𝑦𝑡} = 𝜎2
𝑢(1 + 𝜃2

1).
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In general, the auto covariance function for the order 𝑘 is defined as

𝛾𝑘 = ℂ𝑣{𝑦𝑡, 𝑦𝑡−𝑘} = {𝜃1𝜎2
𝑢 𝑘 ≤ 1

0 𝑘 > 1 .

It follows that, the auto covariance function is bounded up to the first lag, i.e.
∞

∑
𝑗=0

|𝛾𝑗| = 𝜎2
𝑢(1 + 𝜃1 + 𝜃2

1),

and therefore the process is always stationary without requiring any condition on the parameter
𝜃1. Also the autocorrelation is different from zero only between the first two lags, i.e. the
process is said to have a short memory

𝜌𝑘 = ℂ𝑟{𝑦𝑡, 𝑦𝑡−𝑘} = {
𝜃1

1+𝜃2
1

𝑘 ≤ 1
0 𝑘 > 1

.

Proof: Proposition 19.2

Proof. Let’s consider an MA(1) process 𝑦𝑡 = 𝜇 + 𝜃1𝑢𝑡−1 + 𝑢𝑡, where 𝑢𝑡 is a White Noise
process (Equation 18.1). The expected value of 𝑦𝑡 depends on the intercept 𝜇, i.e.

𝔼{𝑦𝑡} = 𝜇 + 𝜃1𝔼{𝑢𝑡−1} + 𝔼{𝑢𝑡} = 𝜇 .

Under the White Noise assumption the residuals are uncorrelated, hence the variance is
computed as

𝛾0 = 𝕍{𝜇 + 𝑢𝑡 + 𝜃2
1𝑢𝑡−1} =

= 𝕍{𝑢𝑡 + 𝜃2
1𝑢𝑡−1} =

= 𝕍{𝑢𝑡} + 𝜃2
1𝕍{𝑢𝑡−1} =

= 𝜎2
𝑢 + 𝜃1𝜎2

𝑢 =
= 𝜎2

𝑢(1 + 𝜃2
1)

By definition, the autocovariance function between time 𝑡 and a generic lagged value 𝑡−𝑘
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reads

𝛾𝑘 = ℂ𝑣{𝑦𝑡, 𝑦𝑡−𝑘}
= 𝔼{𝑦𝑡𝑦𝑡−𝑘} − 𝔼{𝑦𝑡}𝔼{𝑦𝑡−𝑘} =
= 𝔼{(𝜇 + 𝑢𝑡 + 𝜃1𝑢𝑡−1)(𝜇 + 𝑢𝑡−𝑘 + 𝜃1𝑢𝑡−𝑘−1)} − 𝜇2 =
= 𝔼{𝑢𝑡𝑢𝑡−𝑘} + 𝜃1𝔼{𝑢𝑡−𝑘𝑢𝑡−1} + 𝜃1𝔼{𝑢𝑡𝑢𝑡−𝑘−1} + 𝜃2

1𝔼{𝑢𝑡−1𝑢𝑡−𝑘−1}+
+ 𝜇2 + 𝜇𝔼{𝑢𝑡−𝑘} + 𝜇𝜃1𝔼{𝑢𝑡−𝑘−1} + 𝜇𝔼{𝑢𝑡} + 𝜇𝜃1𝔼{𝑢𝑡−1} =

= 𝜃1𝔼{𝑢𝑡−𝑘𝑢𝑡−1} =

= {𝜃1𝕍{𝑢𝑡−1} 𝑘 ≤ 1
0 𝑘 > 1

This is a consequence of 𝑢𝑡 being a White Noise and so uncorrelated in time,
i.e. 𝔼{𝑢𝑡𝑢𝑡−𝑘} = 0 for every 𝑡. This implies that, also the correlation between two
lags is zero if 𝑘 > 1.

Example: stationary MA(1)

Example 19.1. Under the assumption that the residuals are Gaussian, i.e. 𝑢𝑡 ∼ 𝒩(0, 𝜎2),
we can simulate scenarios of a moving-average process of order 1 of the form

𝑦𝑡 ∼ MA(1) ⟺ 𝑦𝑡 = 𝜇 + 𝜃1𝑢𝑡−1 + 𝑢𝑡. (19.2)

1. Next step dynamics from Equation 19.2.
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Figure 19.1: Simulation of an MA(1) process with long term expected value (red, top)
and empiric autocovariance for the first 30 lag.(bottom).

Let’s now compute the expectation, variance and covariance on simulated values and
with the formulas.

Table 19.1: Empiric and theoric expectation, variance, covariance and correlation (first
lag) for a stationary MA(1) process.

Statistic Formula Monte Carlo |Error|
𝔼{𝑦𝑡} 1.0000000 0.9974245 0.258%
𝕍{𝑦𝑡} 1.0225000 1.0301274 -0.74%
ℂ𝑣{𝑦𝑡, 𝑦𝑡−1} 0.1500000 0.1513608 -0.899%
ℂ𝑟{𝑦𝑡, 𝑦𝑡−1} 0.1466993 0.1469331 -0.159%

19.2 AR(P)

In time series analysis an univariate time series 𝑦𝑡 is defined as Autoregressive process of order
p (AR(p)), when it satisfy the equations of the differences, i.e.

𝑦𝑡 = 𝜙1𝑦𝑡−1 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 + 𝑢𝑡, (19.3)
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where 𝑝 defines the order of the process and 𝑢𝑡 ∼ WN(0, 𝜎2
𝑢). In compact form:

𝑦𝑡 =
𝑝

∑
𝑖=1

𝜙𝑖𝑦𝑡−𝑖 + 𝑢𝑡.

An Autoregressive process can be equivalently expressed in terms of the polynomial operator,
i.e.

Φ(𝐿)𝑦𝑡 = 𝑢𝑡, Φ(𝐿) = 1 − 𝜙1𝐿 − ⋯ − 𝜙𝑝𝐿𝑝.

From Section 18.3.1 it follows that it exists a stationary AR(p) process if and only if all the
solutions of the characteristic equations, i.e. Φ(𝑧) = 0, are greater than 1 in absolute value. In
such case the AR(p) process admits an equivalent representation in terms of MA(∞), i.e.

𝑦𝑡 = Φ(𝐿)−1𝑢𝑡 = 1
1 − 𝜙1𝐿 − ⋯ − 𝜙𝑝𝐿𝑝 𝑢𝑡

= (1 + 𝜓1𝐿 + 𝜓2𝐿2 + … ) =
∞

∑
𝑖=1

𝜓𝑖𝑢𝑡−𝑖

19.2.1 Stationary AR(1)

Let’s consider an AR(1) process, i.e.

𝑦𝑡 = 𝜇 + 𝜙1𝑦𝑡−1 + 𝑢𝑡.

Through recursion up to time 0 it is possible to express an AR(1) model as an MA(∞), i.e.

𝑦𝑡 = 𝜙𝑡
1𝑦0 + 𝜇

𝑡−1
∑
𝑖=0

𝜙𝑖
1 +

𝑡−1
∑
𝑖=0

𝜙𝑖
1𝑢𝑡−𝑖,

where the process is stationary if and only if |𝜙1| < 1. In fact, independently from the specific
distribution of the residuals 𝑢𝑡, the unconditional expectation of an AR(1) converges if and
only if |𝜙1| < 1, i.e.

𝔼{𝑦𝑡} = 𝜙𝑡
1𝑦0 + 𝜇

𝑡−1
∑
𝑖=0

𝜙𝑖
1 = 𝜇

1 − 𝜙1
.

The variance instead is computed as:

𝛾0 = 𝕍{𝑦𝑡} =
𝑡−1
∑
𝑖=0

𝜙2𝑖
1 𝜎2

𝑢 = 𝜎2
𝑢

1 − 𝜙2
1
.

The auto covariance decays exponentially fast depending on the parameter 𝜙1, i.e.

𝛾1 = ℂ𝑣{𝑦𝑡, 𝑦𝑡−1} = 𝜙1 ⋅ 𝜎2
𝑢

1 − 𝜙2
1

= 𝜙1 ⋅ 𝛾0,
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where in general for the lag 𝑘

𝛾𝑘 = ℂ𝑣{𝑦𝑡, 𝑦𝑡−𝑘} = 𝜙|𝑘|
1 ⋅ 𝛾0.

Finally, the autocorrelation function

𝜌1 = ℂ𝑟{𝑦𝑡, 𝑦𝑡−1} = 𝛾1
𝛾0

= 𝜙1,

where in general for the lag 𝑘
𝜌𝑘 = ℂ𝑟{𝑦𝑡, 𝑦𝑡−𝑘} = 𝜙|𝑘|

1 .

An example of a simulated AR(1) process (𝜙1 = 0.95, 𝜇 = 0.5 and 𝜎2
𝑢 = 1 and Normally

distributed residuals) with its covariance function is shown in Figure 19.2.
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Figure 19.2: AR(1) simulation and expected value (red) on the top. Empirical autocovariance
(gray) and fitted exponential decay (blue) at the bottom.

Example: sampling from a stationary AR(1)

Example 19.2. Sampling the process for different 𝑡 we expect that, on a large number
of simulations, the distribution will be normal with stationary moments, i.e. for all 𝑡

𝑦𝑡 ∼ 𝒩 ( 𝜇
1 − 𝜙1

, 𝜎2

1 − 𝜙2
1
) .

113



−6

−3

0

3

6

0 30 60 90
t

y t

µ :   0    φ1:  0.7    σu
2:  1

Figure 19.3: Stationary AR(1) simulation with expected value, one possible trajectory
and samples at different times.
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Figure 19.4: Stationary AR(1) histograms for different sampled times with normal pdf
from empiric moments and normal pdf with theoric moments.

Table 19.2: Empiric and theoric expectation, variance, covariance and correlation (first
lag) for a stationary AR(1) process.

Statistic Theoric Empiric
𝔼{𝑦𝑡} 0.000000 -0.0027287
𝕍{𝑦𝑡} 1.960784 1.9530614
ℂ𝑣{𝑦𝑡, 𝑦𝑡−1} 1.372549 1.3586670
ℂ𝑟{𝑦𝑡, 𝑦𝑡−1} 0.700000 0.6956660

19.2.2 Expectation

Proposition 19.3 (Expectation of an AR(p)). The unconditional expected value of a station-
ary AR(p) process reads

𝔼{𝑦𝑡} = 𝜇
1 − ∑𝑝

𝑖=1 𝜙𝑖
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Proof: Proposition 19.3

Proof. Let’s consider an AR(p) process 𝑦𝑡, then the unconditional expectation of the
process is computed as

𝔼{𝑦𝑡} = 𝔼 {𝜇 +
𝑝

∑
𝑖=1

𝜙𝑖𝑦𝑡−𝑖 + 𝑢𝑡} =

= 𝜇 +
𝑞

∑
𝑖=1

𝜙𝑖𝔼{𝑦𝑡−𝑖} + 𝔼{𝑢𝑡} =

= 𝜇 +
𝑞

∑
𝑖=1

𝜙𝑖𝔼{𝑦𝑡}

Since, under the assumption of stationarity the long term expectation of 𝔼{𝑦𝑡−𝑖} is the
same as the long term expectation of 𝔼{𝑦𝑡}. Hence, solving for the expected value one
obtain:

𝔼{𝑦𝑡} (1 −
𝑝

∑
𝑖=1

𝜙𝑖) = 𝜇 ⟹ 𝔼{𝑦𝑡} = 𝜇
1 − ∑𝑝

𝑖=1 𝜙𝑖

19.2.3 Yule-Walker equations

If the AR(p) process is stationary, the covariance function satisfies the recursive relation, i.e.

⎧{
⎨{⎩

𝛾𝑘 − 𝜙1𝛾𝑘−1 − ⋯ − 𝜙𝑘−𝑝𝛾𝑘−𝑝 = 0
⋮
𝛾0 = 𝜙1𝛾1 + ⋯ + 𝜙𝑝𝛾𝑝 + 𝜎2

𝑢

where 𝛾−𝑘 = 𝛾𝑘. For 𝑘 = 0, … , 𝑝 the above equations forms a system of 𝑝 + 1 linear equations
in 𝑝 + 1 unknowns 𝛾0, … , 𝛾𝑝, also known as Yule-Walker equations.

Proposition 19.4 (Variance for an AR(1)). Let’s consider an AR(1) model without intercept
so that 𝔼{𝑦𝑡} = 0. Then, its covariance function reads:

𝛾𝑘 = 𝜎2

1 − 𝜙2
1
𝜙𝑘

1 = 𝛾0𝜙𝑘
1
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Proof: Proposition 19.4

Proof. Let’s consider an AR(1) model without intercept so that 𝔼{𝑦𝑡} = 0, i.e.

𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝑢𝑡.

The proof of the covariance function is divided in two parts. Firstly, we compute the
variance and covariances of the AR(1) model. Then, we set the system and we solve it.
Notably, the variance of 𝑦𝑡 reads:

𝛾0 = 𝕍{𝑦𝑡} = 𝔼{𝑦2
𝑡 } − 𝔼{𝑦𝑡}2 = 𝔼{𝑦2

𝑡 } =
= 𝔼{𝑦𝑡(𝜙1𝑦𝑡−1 + 𝜀𝑡)} =
= 𝜙1𝔼{𝑦𝑡𝑦𝑡−1} + 𝔼{𝑦𝑡𝜀𝑡} =
= 𝜙1𝛾1 + 𝜎2

(19.4)

remembering that 𝔼{𝑦𝑡𝜀𝑡} = 𝔼{𝜀2
𝑡 }. The covariance with first lag, namely 𝛾1 is computed

as:
𝛾1 = ℂ𝑣{𝑦𝑡, 𝑦𝑡−1} = 𝔼{(𝜙1𝑦𝑡−1 + 𝜀𝑡)𝑦𝑡−1} =

= 𝜙1𝔼{𝑦2
𝑡−1} = 𝜙1𝛾0

(19.5)

The Yule-Walker system is given by Equation 19.4, Equation 19.5, i.e.

{𝛾0 = 𝜙1𝛾1 + 𝜎2 (𝐿0)
𝛾1 = 𝜙1𝛾0 (𝐿1)

In order to solve the system, let’s substitute 𝛾1 (Equation 19.5) in 𝛾0 (Equation 19.4)
and solve for 𝛾0, i.e.

{
𝛾0 = 𝜙2

1𝛾0 + 𝜎2 = 𝜎2

1−𝜙2
1

(𝐿0)
𝛾1 = 𝜙1

𝜎2

1−𝜙2
1

(𝐿1)
Hence, by the relation 𝛾𝑘 = 𝜙1𝛾𝑘−1 the covariance reads explicitely:

𝛾𝑘 = 𝜎2

1 − 𝜙2
1
𝜙𝑘

1 = 𝛾0𝜙𝑘
1

Proposition 19.5 (Variance for an AR(2)). Let’s consider an AR(2) model without intercept
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so that 𝔼{𝑦𝑡} = 0. Then, its covariance function reads:

𝛾𝑘 =

⎧{{
⎨{{⎩

𝛾0 = 𝜓0𝜎2 𝑘 = 0
𝛾1 = 𝜓1𝛾0 𝑘 = 1
𝛾2 = 𝜓2𝛾0 𝑘 = 2
𝛾𝑘 = 𝜙1𝛾𝑘−1 + 𝜙2𝛾𝑘−2 𝑘 ≥ 3

where
𝜓0 = (1 − 𝜙1𝜓1 − 𝜙2𝜓2)−1

𝜓1 = 𝜙1(1 − 𝜙2)−1

𝜓2 = 𝜓1𝜙1 + 𝜙2

Proof: Proposition 19.5

Proof. Let’s consider an AR(2) model without intercept so that 𝔼{𝑦𝑡} = 0, i.e.
𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝑢𝑡.

The proof of the covariance function is divided in two parts. Firstly, we compute the
variance and covariances of the AR(2) model. Then, we set the system and we solve it.
Notably, the variance of 𝑦𝑡 reads:

𝛾0 = 𝕍{𝑦𝑡} = 𝔼{𝑦2
𝑡 } − 𝔼{𝑦𝑡}2 = 𝔼{𝑦2

𝑡 } =
= 𝔼{𝑦𝑡(𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜀𝑡)} =
= 𝜙1𝔼{𝑦𝑡𝑦𝑡−1} + 𝜙2𝔼{𝑦𝑡𝑦𝑡−2} + 𝔼{𝑦𝑡𝜀𝑡} =
= 𝜙1𝛾1 + 𝜙2𝛾2 + 𝜎2

(19.6)

remembering that 𝔼{𝑦𝑡𝜀𝑡} = 𝔼{𝜀2
𝑡 }. The covariance with first lag, namely 𝛾1 is computed

as:
𝛾1 = ℂ𝑣{𝑦𝑡, 𝑦𝑡−1} = 𝔼{(𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜀𝑡)𝑦𝑡−1} =

= 𝜙1𝔼{𝑦2
𝑡−1} + 𝜙2𝔼{𝑦𝑡−2𝑦𝑡−1} =

= 𝜙1𝛾0 + 𝜙2𝛾1

(19.7)

The covariance with second lag, namely 𝛾2 is computed as:
𝛾2 = ℂ𝑣{𝑦𝑡, 𝑦𝑡−1} = 𝔼{(𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜀𝑡)𝑦𝑡−2} =

= 𝜙1𝔼{𝑦𝑡−1𝑦𝑡−2} + 𝜙2𝔼{𝑦2
𝑡−2} =

= 𝜙1𝛾1 + 𝜙2𝛾0

(19.8)

The Yule-Walker system is given by Equation 19.6, Equation 19.7 and Equation 19.8,
i.e.

⎧{
⎨{⎩

𝛾0 = 𝜙1𝛾1 + 𝜙2𝛾2 + 𝜎2 (𝐿0)
𝛾1 = 𝜙1𝛾0 + 𝜙2𝛾1 (𝐿1)
𝛾2 = 𝜙1𝛾1 + 𝜙2𝛾0 (𝐿2)
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In order to solve the system, let’s start by solving for 𝛾1 (Equation 19.7) in terms of 𝛾0
in 𝐿1, i.e.

𝛾1 = ( 𝜙1
1 − 𝜙2

)
⏟⏟⏟⏟⏟

𝜓1

𝛾0 = 𝜓1𝛾0. (19.9)

Substituting 𝛾1 from Equation 19.9 into 𝛾2 (Equation 19.8) in 𝐿2 gives:

𝛾2 = (𝜓1𝜙1 + 𝜙2)⏟⏟⏟⏟⏟
𝜓2

𝛾0 = 𝜓2𝛾0. (19.10)

Finally, substituting 𝛾1 (Equation 19.9) and 𝛾2 (Equation 19.10) into 𝛾0 (Equation 19.6)
in 𝐿0 gives an explicit expression of the variance of 𝑦𝑡, i.e.

𝛾0 = 1
1 − 𝜙1𝜓1 − 𝜙2𝜓2⏟⏟⏟⏟⏟⏟⏟

𝜓0

𝜎2 = 𝜓0𝜎2.

Table 19.3: Theoric long term variance and variance computed on 500 Monte Carlo sim-
ulations (t = 100000).

Covariance Formula MonteCarlo
𝕍{𝑦𝑡} 1.1363636 1.1362110
ℂ𝑣{𝑦𝑡, 𝑦𝑡−1} 0.3787879 0.3785980
ℂ𝑣{𝑦𝑡, 𝑦𝑡−2} 0.2272727 0.2271252
ℂ𝑣{𝑦𝑡, 𝑦𝑡−3} 0.1060606 0.1060733
ℂ𝑣{𝑦𝑡, 𝑦𝑡−4} 0.0545455 0.0544696
ℂ𝑣{𝑦𝑡, 𝑦𝑡−5} 0.0269697 0.0268185

Proposition 19.6 (Variance for an AR(3)). Let’s consider an AR(3) model without intercept
so that 𝔼{𝑦𝑡} = 0. Then, its covariance function reads:

𝛾𝑘 =

⎧{{{
⎨{{{⎩

𝛾0 = 𝜓0𝜎2 𝑘 = 0
𝛾1 = 𝜓1𝛾0 𝑘 = 1
𝛾2 = 𝜓2𝛾0 𝑘 = 2
𝛾3 = 𝜓3𝛾0 𝑘 = 3
𝛾𝑘 = 𝜙1𝛾𝑘−1 + 𝜙2𝛾𝑘−2 + 𝜙3𝛾𝑘−3 𝑘 ≥ 4

119



where
𝜓0 = (1 − 𝜙1𝜓1 − 𝜙2𝜓2 − 𝜙3𝜓3)−1

𝜓1 = (𝜙1 + 𝜙2𝜙3)(1 − 𝜙2 − 𝜙2
3 − 𝜙1𝜙3)−1

𝜓2 = 𝜙1𝜓1 + 𝜙3𝜓1 + 𝜙2
𝜓3 = 𝜙1𝜓2 + 𝜙2𝜓1 + 𝜙3

Proof: Proposition 19.6

Proof. Let’s consider an AR(3) model without intercept so that 𝔼{𝑦𝑡} = 0, i.e.
𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜙3𝑦𝑡−3 + 𝑢𝑡

where 𝜀𝑡 ∼ WN(0, 𝜎2). Notably, the variance is computed as:
𝛾0 = 𝕍{𝑦𝑡} = 𝔼{𝑦2

𝑡 } − 𝔼{𝑦𝑡}2 =
= 𝔼{𝑦2

𝑡 } =
= 𝔼{𝑦𝑡(𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜙3𝑦𝑡−3 + 𝜀𝑡)} =
= 𝜙1𝔼{𝑦𝑡𝑦𝑡−1} + 𝜙2𝔼{𝑦𝑡𝑦𝑡−2} + 𝜙3𝔼{𝑦𝑡𝑦𝑡−3} + 𝔼{𝑦𝑡𝜀𝑡} =
= 𝜙1𝛾1 + 𝜙2𝛾2 + 𝜙3𝛾3 + 𝜎2

(19.11)

remembering that 𝔼{𝑦𝑡𝜀𝑡} = 𝔼{𝜀2
𝑡 }. The covariance with first lag, namely 𝛾1 is computed

as:
𝛾1 = ℂ𝑣{𝑦𝑡, 𝑦𝑡−1} = 𝔼{(𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜙3𝑦𝑡−3 + 𝜀𝑡)𝑦𝑡−1} =

= 𝜙1𝔼{𝑦2
𝑡−1} + 𝜙2𝔼{𝑦𝑡−2𝑦𝑡−1} + 𝜙3𝔼{𝑦𝑡−3𝑦𝑡−1} =

= 𝜙1𝛾0 + 𝜙2𝛾1 + 𝜙2𝛾2

(19.12)

The covariance with second lag, namely 𝛾2 is computed as:
𝛾2 = ℂ𝑣{𝑦𝑡, 𝑦𝑡−2} = 𝔼{(𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜙3𝑦𝑡−3 + 𝜀𝑡)𝑦𝑡−2} =

= 𝜙1𝔼{𝑦𝑡−1𝑦𝑡−2} + 𝜙2𝔼{𝑦2
𝑡−2} + 𝜙3𝔼{𝑦𝑡−3𝑦𝑡−2} =

= 𝜙1𝛾1 + 𝜙2𝛾0 + 𝜙3𝛾1

(19.13)

The covariance with third lag, namely 𝛾3 is computed as:
𝛾3 = ℂ𝑣{𝑦𝑡, 𝑦𝑡−3} = 𝔼{(𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜙3𝑦𝑡−3 + 𝜀𝑡)𝑦𝑡−3} =

= 𝜙1𝔼{𝑦𝑡−1𝑦𝑡−3} + 𝜙2𝔼{𝑦𝑡−2𝑦𝑡−3} + 𝜙3𝔼{𝑦2
𝑡−3} =

= 𝜙1𝛾2 + 𝜙2𝛾1 + 𝜙3𝛾0

(19.14)

The Yule-Walker system is given by Equation 19.11, Equation 19.12, Equation 19.13 and
Equation 19.14 reads

⎧{{
⎨{{⎩

𝛾0 = 𝜙1𝛾1 + 𝜙2𝛾2 + 𝜙3𝛾3 + 𝜎2 (𝐿0)
𝛾1 = 𝜙1𝛾0 + 𝜙2𝛾1 + 𝜙3𝛾2 (𝐿1)
𝛾2 = 𝜙1𝛾1 + 𝜙2𝛾0 + 𝜙3𝛾1 (𝐿2)
𝛾3 = 𝜙1𝛾2 + 𝜙2𝛾1 + 𝜙3𝛾0 (𝐿3)
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Let’s start by expressing 𝛾2 (Equation 19.13) in terms of 𝛾1 and 𝛾0 from 𝐿2, i.e.

𝛾2 = (𝜙1 + 𝜙3)𝛾1 + 𝜙2𝛾0 (19.15)

Then, let’s substitute the above expression of 𝛾2 (Equation 19.15) in 𝛾1 (Equation 19.12)
from 𝐿1, i.e.

𝛾1 = 𝜙1𝛾0 + 𝜙2𝛾1 + 𝜙3(𝜙1 + 𝜙3)𝛾1 + 𝜙3𝜙2𝛾0

At this point 𝛾1 depends only on 𝛾0, hence we can solve it:

𝛾1 = 𝜙1 + 𝜙2𝜙3
1 − 𝜙2 − 𝜙2

3 − 𝜙1𝜙3⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜓1

𝛾0 = 𝜓1𝛾0 (19.16)

With 𝛾1 solved, one can come back to the expression of 𝛾2 (Equation 19.15) and substitute
the result in 𝛾1 (Equation 19.16) obtaining an explicit expression for 𝛾2, i.e.

𝛾2 = (𝜙1𝜓1 + 𝜙3𝜓1 + 𝜙2)⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜓2

𝛾0 = 𝜓2𝛾0 (19.17)

Substituting the explicit expressions of 𝛾2 (Equation 19.17) and 𝛾1 (Equation 19.16) into
𝛾3 (Equation 19.14) completes the system, i.e.

𝛾3 = (𝜙1𝜓2 + 𝜙2𝜓1 + 𝜙3)⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜓3

𝛾0 = 𝜓3𝛾0 (19.18)

Finally, substituting 𝛾1 (Equation 19.16), 𝛾2 (Equation 19.17) and 𝛾3 (Equation 19.18)
in 𝛾0 (Equation 19.11) gives the variance, i.e.

𝛾0 = 1
1 − 𝜙1𝜓1 − 𝜙2𝜓2 − 𝜙3𝜓3⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜓0

𝜎2 (19.19)

𝜓0 = (1 − 𝜙1𝜓1 − 𝜙2𝜓2 − 𝜙3𝜓3)−1

𝜓1 = (𝜙1 + 𝜙2𝜙3)(1 − 𝜙2 − 𝜙2
3 − 𝜙1𝜙3)−1

𝜓2 = 𝜙1𝜓1 + 𝜙3𝜓1 + 𝜙2
𝜓3 = 𝜙1𝜓2 + 𝜙2𝜓1 + 𝜙3

Table 19.4: Theoric long term variance and variance computed on 500 Monte Carlo sim-
ulations (t = 100000).

Covariance Formula MonteCarlo
𝕍{𝑦𝑡} 1.1538304 1.1535204
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ℂ𝑣{𝑦𝑡, 𝑦𝑡−1} 0.3987743 0.3985179
ℂ𝑣{𝑦𝑡, 𝑦𝑡−2} 0.2549540 0.2548731
ℂ𝑣{𝑦𝑡, 𝑦𝑡−3} 0.1740552 0.1738990
ℂ𝑣{𝑦𝑡, 𝑦𝑡−4} 0.0976507 0.0975948
ℂ𝑣{𝑦𝑡, 𝑦𝑡−5} 0.0594484 0.0596297

Proposition 19.7 (Variance for an AR(4)). Let’s consider an AR(4) model without intercept
so that 𝔼{𝑦𝑡} = 0. Then, its covariance function reads:

𝛾𝑘 =

⎧{{{{
⎨{{{{⎩

𝛾0 = 𝜓0𝜎2 𝑘 = 0
𝛾1 = 𝜓1𝛾0 𝑘 = 1
𝛾2 = 𝜓2𝛾0 𝑘 = 2
𝛾3 = 𝜓3𝛾0 𝑘 = 3
𝛾4 = 𝜓4𝛾0 𝑘 = 4
𝛾𝑘 = 𝜙1𝛾𝑘−1 + 𝜙2𝛾𝑘−2 + 𝜙3𝛾𝑘−3 + 𝜙4𝛾𝑘−4 𝑘 ≥ 5

where

𝜓1 = ( 𝜙3𝜙2
1 − 𝜙4

+ 𝜙1𝜙4𝜙2
1 − 𝜙4

+ 𝜙1 + 𝜙3𝜙4) (1 − 𝜙3(𝜙1 + 𝜙3)
1 − 𝜙4

− 𝜙1𝜙4(𝜙1 + 𝜙3)
1 − 𝜙4

− 𝜙2 − 𝜙2𝜙4 − 𝜙2
4)

−1

𝜓2 = 𝜓1(𝜙1 + 𝜙3)
1 − 𝜙4

+ 𝜙2
1 − 𝜙4

𝜓3 = 𝜙1𝜓2 + 𝜙2𝜓1 + 𝜙3 + 𝜙4𝜓1
𝜓4 = 𝜙1𝜓3 + 𝜙2𝜓2 + 𝜙3𝜓1 + 𝜙4
𝜓0 = (1 − 𝜙1𝜓1 − 𝜙2𝜓2 − 𝜙3𝜓3 − 𝜙4𝜓4)−1

Proof: Proposition 19.7

Proof. Let’s consider an AR(4) model without intercept so that 𝔼{𝑦𝑡} = 0, i.e.

𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜙3𝑦𝑡−3 + 𝜙4𝑦𝑡−4 + 𝜀𝑡
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where 𝜀𝑡 ∼ WN(0, 𝜎2). Notably, the variance is computed as:

𝛾0 = 𝕍{𝑦𝑡} = 𝔼{𝑦2
𝑡 } − 𝔼{𝑦𝑡}2 =

= 𝔼{𝑦2
𝑡 } =

= 𝔼{𝑦𝑡(𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜙3𝑦𝑡−3 + 𝜙4𝑦𝑡−4 + 𝜀𝑡)} =
= 𝜙1𝔼{𝑦𝑡𝑦𝑡−1} + 𝜙2𝔼{𝑦𝑡𝑦𝑡−2} + 𝜙3𝔼{𝑦𝑡𝑦𝑡−3} + 𝜙4𝔼{𝑦𝑡𝑦𝑡−4} + 𝔼{𝑦𝑡𝜀𝑡} =
= 𝜙1𝛾1 + 𝜙2𝛾2 + 𝜙3𝛾3 + 𝜙4𝛾4 + 𝜎2

(19.20)
remembering that 𝔼{𝑦𝑡𝜀𝑡} = 𝔼{𝜀2

𝑡 }. The covariance with first lag, namely 𝛾1 is computed
as:

𝛾1 = ℂ𝑣{𝑦𝑡, 𝑦𝑡−1} = 𝔼{(𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜙3𝑦𝑡−3 + 𝜙4𝑦𝑡−4 + 𝜀𝑡)𝑦𝑡−1} =
= 𝜙1𝔼{𝑦2

𝑡−1} + 𝜙2𝔼{𝑦𝑡−2𝑦𝑡−1} + 𝜙3𝔼{𝑦𝑡−3𝑦𝑡−1} + 𝜙4𝔼{𝑦𝑡−4𝑦𝑡−1} =
= 𝜙1𝛾0 + 𝜙2𝛾1 + 𝜙2𝛾2 + 𝜙3𝛾3

(19.21)
The covariance with second lag, namely 𝛾2 is computed as:

𝛾2 = ℂ𝑣{𝑦𝑡, 𝑦𝑡−2} = 𝔼{(𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜙3𝑦𝑡−3 + 𝜙4𝑦𝑡−4 + 𝜀𝑡)𝑦𝑡−2} =
= 𝜙1𝔼{𝑦𝑡−1𝑦𝑡−2} + 𝜙2𝔼{𝑦2

𝑡−2} + 𝜙3𝔼{𝑦𝑡−3𝑦𝑡−2} + 𝜙4𝔼{𝑦𝑡−4𝑦𝑡−2} =
= 𝜙1𝛾1 + 𝜙2𝛾0 + 𝜙3𝛾1 + 𝜙4𝛾2

(19.22)
The covariance with third lag, namely 𝛾3 is computed as:

𝛾3 = ℂ𝑣{𝑦𝑡, 𝑦𝑡−3} = 𝔼{(𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜙3𝑦𝑡−3 + 𝜙4𝑦𝑡−4 + 𝜀𝑡)𝑦𝑡−3} =
= 𝜙1𝔼{𝑦𝑡−1𝑦𝑡−3} + 𝜙2𝔼{𝑦𝑡−2𝑦𝑡−3} + 𝜙3𝔼{𝑦2

𝑡−3} + 𝜙4𝔼{𝑦𝑡−4𝑦𝑡−3} =
= 𝜙1𝛾2 + 𝜙2𝛾1 + 𝜙3𝛾0 + 𝜙4𝛾1

(19.23)
The covariance with fourth lag, namely 𝛾4 is computed as:

𝛾4 = ℂ𝑣{𝑦𝑡, 𝑦𝑡−4} = 𝔼{(𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜙3𝑦𝑡−3 + 𝜙4𝑦𝑡−4 + 𝜀𝑡)𝑦𝑡−4} =
= 𝜙1𝔼{𝑦𝑡−1𝑦𝑡−4} + 𝜙2𝔼{𝑦𝑡−2𝑦𝑡−4} + 𝜙3𝔼{𝑦𝑡−3𝑦𝑡−4} + 𝜙4𝔼{𝑦4

𝑡−4} =
= 𝜙1𝛾3 + 𝜙2𝛾2 + 𝜙3𝛾1 + 𝜙4𝛾0

(19.24)
The Yule-Walker system is given by Equation 19.20, Equation 19.21 and Equation 19.22,
Equation 19.23, Equation 19.24 reads

⎧{{{
⎨{{{⎩

𝛾0 = 𝜙1𝛾1 + 𝜙2𝛾2 + 𝜙3𝛾3 + 𝜙4𝛾4 + 𝜎2 (𝐿0)
𝛾1 = 𝜙1𝛾0 + 𝜙2𝛾1 + 𝜙3𝛾2 + 𝜙4𝛾3 (𝐿1)
𝛾2 = 𝜙1𝛾1 + 𝜙2𝛾0 + 𝜙3𝛾1 + 𝜙4𝛾2 (𝐿2)
𝛾3 = 𝜙1𝛾2 + 𝜙2𝛾1 + 𝜙3𝛾0 + 𝜙4𝛾1 (𝐿3)
𝛾4 = 𝜙1𝛾3 + 𝜙2𝛾2 + 𝜙3𝛾1 + 𝜙4𝛾0 (𝐿4)
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To solve the system, let’s substitue 𝛾1 (Equation 19.21) into 𝛾2 (Equation 19.22) and
recover 𝛾2 in terms of 𝛾0, i.e.

𝛾2 = 𝜙1 + 𝜙3
1 − 𝜙4

𝛾1 + 𝜙2
1 − 𝜙4

𝛾0 (19.25)

Then, substitue 𝛾3 (Equation 19.23) into 𝛾1 (Equation 19.21), i.e.

𝛾1 = (𝜙3 + 𝜙1𝜙4)𝛾2 + (𝜙2 + 𝜙2𝜙4 + 𝜙2
4)𝛾1 + (𝜙1 + 𝜙3𝜙4)𝛾0 (19.26)

Then, substitue 𝛾2 (Equation 19.25) into the previous expression for 𝛾1 (Equation 19.26),
i.e.

𝛾1 = (𝜙3(𝜙1 + 𝜙3)
1 − 𝜙4

+ 𝜙1𝜙4(𝜙1 + 𝜙3)
1 − 𝜙4

+ 𝜙2 + 𝜙2𝜙4 + 𝜙2
4) 𝛾1+

+ ( 𝜙3𝜙2
1 − 𝜙4

+ 𝜙1𝜙4𝜙2
1 − 𝜙4

+ 𝜙1 + 𝜙3𝜙4) 𝛾0

Hence, recovering 𝛾1 one obtain:

𝛾1 = ⎛⎜
⎝

𝜙3𝜙2
1−𝜙4

+ 𝜙1𝜙4𝜙2
1−𝜙4

+ 𝜙1 + 𝜙3𝜙4

1 − 𝜙3(𝜙1+𝜙3)
1−𝜙4

− 𝜙1𝜙4(𝜙1+𝜙3)
1−𝜙4

− 𝜙2 − 𝜙2𝜙4 − 𝜙2
4

⎞⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜓1

𝛾0 = 𝜓1𝛾0 (19.27)

Substituing 𝛾1 (Equation 19.27) into 𝛾2 (Equation 19.25) gives

𝛾2 = (𝜓1(𝜙1 + 𝜙3)
1 − 𝜙4

+ 𝜙2
1 − 𝜙4

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜓2

𝛾0 = 𝜓2𝛾0 (19.28)

Then, let’s rewrite 𝛾3 (Equation 19.23) substituing 𝛾1 (Equation 19.27) and 𝛾2 (Equa-
tion 19.28), i.e.

𝛾3 = (𝜙1𝜓2 + 𝜙2𝜓1 + 𝜙3 + 𝜙4𝜓1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜓3

𝛾0 = 𝜓3𝛾0 (19.29)

Finally, substituing 𝛾1 (Equation 19.27), 𝛾2 (Equation 19.28) and 𝛾3 (Equation 19.29)
into 𝛾4 (Equation 19.24) gives:

𝛾4 = (𝜙1𝜓3 + 𝜙2𝜓2 + 𝜙3𝜓1 + 𝜙4)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜓4

𝛾0 = 𝜓4𝛾0 (19.30)

Finally, substituing 𝛾1 (Equation 19.27), 𝛾2 (Equation 19.28) and 𝛾3 (Equation 19.29)
and 𝛾4 (Equation 19.30) into 𝛾0 (Equation 19.20) gives the variance, i.e.

𝛾0 = 1
1 − 𝜙1𝜓1 − 𝜙2𝜓2 − 𝜙3𝜓3 − 𝜙4𝜓4⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜓0

𝜎2 (19.31)
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Table 19.5: Theoric long term variance and variance computed on 500 Monte Carlo sim-
ulations (t = 100000).

Covariance Formula MonteCarlo
𝕍{𝑦𝑡} 1.2543907 1.2509545
ℂ𝑣{𝑦𝑡, 𝑦𝑡−1} 0.5084245 0.5003887
ℂ𝑣{𝑦𝑡, 𝑦𝑡−2} 0.4036375 0.3997435
ℂ𝑣{𝑦𝑡, 𝑦𝑡−3} 0.3380467 0.3351931
ℂ𝑣{𝑦𝑡, 𝑦𝑡−4} 0.2504338 0.2481127
ℂ𝑣{𝑦𝑡, 𝑦𝑡−5} 0.1814536 0.1797885

19.2.4 Non-stationary AR(1): random walk

A non-stationary process has expectation and/or variance that changes over time. Considering
the setup of an AR(1), if 𝜙1 = 1 the process degenerates into a so called random walk process.
Formally, if 𝜇 ≠ 0 it is called random walk with drift, i.e.

𝑦𝑡 = 𝜇 + 𝑦𝑡−1 + 𝑢𝑡.

Considering its MA(∞) representation

𝑦𝑡 = 𝑦0 + 𝜇 ⋅ 𝑡 +
𝑡−1
∑
𝑖=0

𝑢𝑡−𝑖,

it is easy to see that the expectation depends on the starting point and on time 𝑡 and the
shocks 𝑢𝑡−𝑖 never decays. In fact, computing the expectation and variance of a random walk
process it emerges a clear dependence on time, i.e.

𝔼{𝑦𝑡 ∣ ℱ0} = 𝑦0 + 𝜇𝑡 𝕍{𝑦𝑡 ∣ ℱ0} = 𝑡𝜎2
𝑢

ℂ𝑣{𝑦𝑡, 𝑦𝑡−𝑘} = (𝑡 − 𝑘) ⋅ 𝜎2 ℂ𝑟{𝑦𝑡, 𝑦𝑡−𝑘} = √𝑡 − 𝑘
𝑡

,

and the variance tends to explode to ∞ as 𝑡 → ∞.

Stochastic trend of a Random walk

Let’s define the stochastic trend 𝑆𝑡 as 𝑆𝑡 = ∑𝑡−1
𝑖=0 𝑢𝑡−𝑖, then
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1. The expectation of 𝑆𝑡 if 𝑢𝑡 are all martingale difference sequences, is zero, i.e.

𝔼{𝑆𝑡} =
𝑡−1
∑
𝑖=0

𝔼{𝑢𝑡−𝑖} =
𝑡−1
∑
𝑖=0

𝔼{𝔼{𝑢𝑡−𝑖 ∣ ℱ𝑡−1}} = 0,

and therefore
𝔼{𝑦𝑡} = 𝑦0 + 𝜇𝑡 + 𝔼{𝑆𝑡} = 𝑦0 + 𝜇𝑡.

2. The variance of 𝑆𝑡, if 𝑢𝑡 are all martingale difference sequences, is time-dependent,
i.e.

𝕍{𝑦𝑡} = 𝕍{𝑆𝑡} =
𝑡−1
∑
𝑖=0

𝕍{𝑢𝑡−𝑖} =
𝑡−1
∑
𝑖=0

𝜎2 = 𝑡 ⋅ 𝜎2.

while the covariance between two times 𝑡 and 𝑡 − 𝑘 depends on the lag, i.e.

ℂ𝑣{𝑆𝑡, 𝑆𝑡−𝑘} = 𝔼{𝑆𝑡𝑆𝑡−𝑘} =
𝑡−𝑘−1
∑
𝑖=0

𝕍{𝑢𝑡−𝑖} = (𝑡 − 𝑘) ⋅ 𝜎2

and so the correlation

ℂ𝑟{𝑆𝑡, 𝑆𝑡−𝑘} = ℂ𝑣{𝑆𝑡, 𝑆𝑡−𝑘}
√𝕍{𝑆𝑡} ⋅ 𝕍{𝑆𝑡−𝑘}

= (𝑡 − 𝑘) ⋅ 𝜎2

√𝑡(𝑡 − 𝑘) ⋅ 𝜎2 = (𝑡 − 𝑘)
√𝑡(𝑡 − 𝑘)

tends to one as 𝑡 → ∞, in fact:

lim
𝑡→∞

ℂ𝑟{𝑆𝑡, 𝑆𝑡−𝑘} = lim
𝑡→∞

(𝑡 − 𝑘)
√𝑡(𝑡 − 𝑘)

= lim
𝑡→∞

√𝑡 − 𝑘
𝑡 = lim

𝑡→∞
√1 − 𝑘

𝑡 = 1

Example: sampling from non-stationary AR(1)

Example 19.3. Let’s simulate an random walk process with drift with a Gaussian error,
namely 𝑢𝑡 ∼ 𝒩(0, 𝜎2

𝑢).
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Figure 19.5: Random walk simulation and expected value (red) on the top. Empirical auto-
correlation (gray).
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Figure 19.6: Non stationary AR(1) simulation with expected value (red), a possible trajec-
tory (green) and samples for different times (magenta) on the top. Theoretic
(blue) and empiric (black) std. deviation at the bottom.
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Sampling the process for different 𝑡 we expect that, on a large number of simulations, the
distribution will be still normal but with non-stationary moments, i.e.

𝑋𝑡 ∼ 𝒩 (𝜇𝑡, 𝜎2
𝑢𝑡) .
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Figure 19.7: Non-stationary AR(1) histograms for different sampled times with normal
pdf with empiric moments (blue) and normal pdf with theoretic moments
(magenta).

Table 19.6: Empiric and theoric expectation, variance, covariance and correlation (first
lag) for a stationary AR(1) process.

t 𝔼{𝑦𝑡} 𝔼𝑚𝑐{𝑦𝑡} 𝕍{𝑦𝑡} 𝕍𝑚𝑐{𝑦𝑡}
30 8.7 8.698311 29 29.69114
60 17.7 17.517805 59 60.09756
90 26.7 26.268452 89 90.05715
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20 ARMA processes

20.1 ARMA(p, q)

An Auto Regressive Moving Average processes, for simplicity ARMA(p,q), is a combination of
an MA(q) and an AR(p) processes, i.e. an 𝑥𝑡 ∼ ARMA(𝑝, 𝑞) is formally defined as

𝑦𝑡 = 𝜇 +
𝑝

∑
𝑖=1

𝜙𝑖𝑦𝑡−𝑖 +
𝑞

∑
𝑗=1

𝜃𝑗𝑢𝑡−𝑗 + 𝑢𝑡,

where in general 𝑢𝑡 ∼ WN(0, 𝜎2
𝑢). An example of a simulated ARMA(1,1) process (𝜙1 = 0.95,

𝜃1 = 0.45 𝜇 = 0.5 and 𝜎2
𝑢 = 1 and Normally distributed residuals) with its covariance function

is shown in Figure 20.1.
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Figure 20.1: ARMA(1,1) simulation on the top and empirical autocorrelation at the bottom.
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20.1.1 Matrix form AR(p)

An Autoregressive process of order p AR(p) (Equation 19.3) can be written in matrix form
as

X𝑡 = c + �X𝑡−1 + b 𝑢𝑡,

where

⎛⎜⎜⎜⎜
⎝

𝑦𝑡
𝑦𝑡−1

⋮
𝑦𝑡−𝑝

⎞⎟⎟⎟⎟
⎠⏟

X𝑡

=
⎛⎜⎜⎜⎜
⎝

𝜇
0
⋮
0

⎞⎟⎟⎟⎟
⎠⏟

c

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜙1 𝜙2 … 𝜙𝑝−1 𝜙𝑝
1 0 … 0 0
0 1 … 0 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 … 1 0
0 0 … 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

�

⎛⎜⎜⎜⎜
⎝

𝑦𝑡−1
𝑦𝑡−2

⋮
𝑦𝑡−𝑝−1

⎞⎟⎟⎟⎟
⎠⏟⏟⏟⏟⏟

X𝑡−1

+
⎛⎜⎜⎜⎜
⎝

1
0
⋮
0

⎞⎟⎟⎟⎟
⎠⏟

b

⋅ 𝑢𝑡

where X𝑡, c and b have dimension 𝑝 × 1, while � is 𝑝 × 𝑝.

How to construct the companion matrix �?

Let’s consider the vector containing the coefficients of the model, i.e.

𝛾
𝑝×1

= (𝜙1 𝜙2 … 𝜙𝑝−1 𝜙𝑝) .

If the order of the Autoregressive process is greater than 1, i.e. 𝑝 > 1, let’s consider an
identity matrix (Equation 32.3) with dimension (𝑝 − 1) × (𝑝 − 1)

I𝑝−1
(𝑝−1)×(𝑝−1)

=
⎛⎜⎜⎜⎜⎜⎜
⎝

1 0 … 0 0
0 1 … 0 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 … 1 0
0 0 … 0 1

⎞⎟⎟⎟⎟⎟⎟
⎠

,

then, we combine it with a column of zeros, i.e.

L𝑝−1
(𝑝−1)×𝑝

= (I𝑝 01×𝑝) .

Finally, we combine L with the AR parameters, i.e.

� = ( 𝛾
L𝑝−1

) .
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Example: AR(4) in matrix form

Example 20.1. Let’s consider for example an AR(4) process. The vector containing the
coefficients of the model reads

𝛾
4×1

= (𝜙1 𝜙2 𝜙3 𝜙4) .

For an AR(4) we consider a diagonal matrix with dimension 3 × 3, i.e.

I3
3×3

= ⎛⎜
⎝

1 0 0
0 1 0
0 0 1

⎞⎟
⎠

,

then, we add a column of zeros, i.e.

L3
3×4

= ⎛⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0

⎞⎟
⎠

.

Finally we combine

� = ( 𝛾
L3

) =
⎛⎜⎜⎜⎜
⎝

𝜙1 𝜙2 𝜙3 𝜙4
1 0 0 0
0 1 0 0
0 0 1 0

⎞⎟⎟⎟⎟
⎠

.

Then, let’s consider the iteration

⎛⎜⎜⎜⎜
⎝

𝑦𝑡
𝑦𝑡−1
𝑦𝑡−2
𝑦𝑡−3

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

𝜇
0
0
0

⎞⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜
⎝

𝜙1 𝜙2 𝜙3 𝜙4
1 0 0 0
0 1 0 0
0 0 1 0

⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

𝑦𝑡−1
𝑦𝑡−2
𝑦𝑡−3
𝑦𝑡−4

⎞⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜
⎝

1
0
0
0

⎞⎟⎟⎟⎟
⎠

𝑢𝑡.

After an explicit computation, one can verify that it lead to the classic AR(4) recursion,
i.e.

⎛⎜⎜⎜⎜
⎝

𝑦𝑡
𝑦𝑡−1
𝑦𝑡−2
𝑦𝑡−3

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜙3𝑦𝑡−3 + 𝜙4𝑦𝑡−4
𝑦𝑡−1
𝑦𝑡−2
𝑦𝑡−3

⎞⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜
⎝

𝑢𝑡
0
0
0

⎞⎟⎟⎟⎟
⎠

=

=
⎛⎜⎜⎜⎜
⎝

𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜙3𝑦𝑡−3 + 𝜙4𝑦𝑡−4 + 𝑢𝑡
𝑦𝑡−1
𝑦𝑡−2
𝑦𝑡−3

⎞⎟⎟⎟⎟
⎠
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20.1.2 Matrix for ARMA

In matrix form an ARMA (p,q) process reads,

X𝑡 = c + AX𝑡−1 + b𝑢𝑡,

where, the first component, namely 𝑦𝑡 = e⊤
𝑝+𝑞X𝑡, is extracted as:

𝑦𝑡 = e⊤
𝑝+𝑞c + e⊤

𝑝+𝑞AX𝑡−1 + e⊤
𝑝+𝑞b 𝑢𝑡.

where e⊤
𝑝+𝑞 is a basis vector (Equation 32.1) with dimension 𝑝 + 𝑞.

How to construct the companion matrix for an ARMA?

Let’s consider the vector 𝛾 containing the coefficients of the model, i.e.

𝛾
1×(𝑞+𝑝)

= (𝜙1 𝜙2 … 𝜙𝑝−1 𝜙𝑝 𝜃1 𝜃2 … 𝜃𝑞−1 𝜃𝑞) .

For an ARMA(p,q) we consider two distinct matrices, i.e. a matrix for the AR part we
consider the identity matrix (Equation 32.3) with order 𝑝 − 1, i.e.

I𝑝−1
(𝑝−1)×(𝑝−1)

=
⎛⎜⎜⎜⎜⎜⎜
⎝

1 0 … 0 0
0 1 … 0 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 … 1 0
0 0 … 0 1

⎞⎟⎟⎟⎟⎟⎟
⎠

,

and we combine it with a column of zeros, i.e.

L𝑝−1
(𝑝−1)×𝑝

= (I𝑝−1 0(𝑝−1)×1) =
⎛⎜⎜⎜⎜⎜⎜
⎝

1 0 … 0 0 0
0 1 … 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ 0
0 0 … 1 0 0
0 0 … 0 1 0

⎞⎟⎟⎟⎟⎟⎟
⎠

.

For the MA part we consider the identity matrix with order 𝑞 − 1, i.e.

I𝑞−1
(𝑞−1)×(𝑞−1)

=
⎛⎜⎜⎜⎜⎜⎜
⎝

1 0 … 0 0
0 1 … 0 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 … 1 0
0 0 … 0 1

⎞⎟⎟⎟⎟⎟⎟
⎠

,
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and we combine it with a column of zeros, i.e.

L𝑞−1
(𝑞−1)×𝑞

= (I𝑞−1 0(𝑞−1)×1) =
⎛⎜⎜⎜⎜⎜⎜
⎝

1 0 … 0 0 0
0 1 … 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ 0
0 0 … 1 0 0
0 0 … 0 1 0

⎞⎟⎟⎟⎟⎟⎟
⎠

.

To combine the matrices L𝑝−1 and L𝑞−1, we need add a matrix of zeros. More precisely:

L
(𝑞+𝑝−1)×(𝑞+𝑝)

= ⎛⎜⎜
⎝

L𝑝−1 0(𝑝−1)×𝑞
01×𝑝 01×𝑞

0(𝑞−1)×𝑝 L𝑞−1

⎞⎟⎟
⎠

.

Finally we combine L with the parameters, i.e.

A
(𝑞+𝑝)×(𝑞+𝑝)

= (𝛾
L) .

Then, the vector b is constructed by combining two basis vectors (Equation 32.1), to
ensure it is equal to one in the position 1 and in the position p+1, i.e.

b = (e𝑝
e𝑞

) .

Example: matrix form of an ARMA(2,3)

Example 20.2. For example let’s consider an ARMA(2,3):

𝛾 = (𝜙1 𝜙2 𝜃1 𝜃2 𝜃3) .

The matrix for the AR part that is equal to � combined with a matrix of zeros, i.e.

L𝑝−1
1×2

= (1 0) ,

For the MA part we consider a similar matrix as in the single case but with first row
equal to zero, i.e.

L𝑞−1
2×3

= (1 0 0
0 1 0) ,

and we combine

L
4×5

= ⎛⎜
⎝

L2×2 02×3
01×2 01×3
02×2 L2×3

⎞⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞⎟⎟⎟⎟
⎠

.
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Finally we combine

A
5×5

= (𝛾
L) =

⎛⎜⎜⎜⎜⎜⎜
⎝

𝜙1 𝜙2 𝜃1 𝜃2 𝜃3
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟
⎠

.

Then, the vector b is constructed by combining two vectors

b = (e2
e3

) = (1 0 1 0 0)⊤ .

Let’s check it would lead to a classic ARMA(2,3):

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑦𝑡
𝑦𝑡−1
𝑢𝑡

𝑢𝑡−1
𝑢𝑡−2

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜃1𝑢𝑡−1 + 𝜃2𝑢𝑡−1 + 𝜃2𝑢𝑡−2
𝑦𝑡−1

0
𝑢𝑡−1
𝑢𝑡−2

⎞⎟⎟⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑢𝑡
0
𝑢𝑡
0
0

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜃1𝑢𝑡−1 + 𝜃2𝑢𝑡−1 + 𝜃3𝑢𝑡−2 + 𝑢𝑡
𝑦𝑡−1
𝑢𝑡

𝑢𝑡−1
𝑢𝑡−2

⎞⎟⎟⎟⎟⎟⎟
⎠

20.2 Moments

Proposition 20.1. Given the information at time 𝑡, the forecasted value at time 𝑡 + ℎ for an
AR(p) process reads:

X𝑡+ℎ =
ℎ−1
∑
𝑗=0

A𝑗c + AℎX𝑡 +
ℎ−1
∑
𝑗=0

A𝑗b 𝑢𝑡+ℎ−𝑗. (20.1)

Proof of Proposition 20.1

Proof. Let’s start developing the Equation 20.1 with ℎ = 1, i.e.

X𝑡+1 = c + AX𝑡 + b 𝑢𝑡+1,
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with ℎ = 2:
X𝑡+2 = c + AX𝑡+1 + b 𝑢𝑡+2 =

= A (c + AX𝑡 + b 𝑢𝑡+1) + b ⋅ 𝑢𝑡+2 =
= c + Ac + A2X𝑡 + b 𝑢𝑡+2 + Ab 𝑢𝑡+1

with ℎ = 3:

X𝑡+3 = c + AX𝑡+2 + b 𝑢𝑡+3 =
= c + A (c + Ac + A2X𝑡 + b 𝑢𝑡+2 + Ab 𝑢𝑡+1) + b 𝑢𝑡+3 =
= c + Ac + A2c + A3X𝑡 + b 𝑢𝑡+3 + Ab 𝑢𝑡+2 + A2b 𝑢𝑡+1

and so on. Hence the impact of the shocks decrease exponentially over time.

20.2.1 Expectation

Proposition 20.2. The conditional expectation at time 𝑡 + ℎ of X𝑡+ℎ given the information
up to time 𝑡 can be easily computed from Equation 20.1, i.e.

𝔼{X𝑡+ℎ ∣ ℱ𝑡} = c (I𝑝 − Aℎ) (I𝑝 − A)−1 + AℎX𝑡.

Proof of Proposition 20.2

Proof. The expectation of Equation 20.1 reads:

𝔼{X𝑡+ℎ ∣ ℱ𝑡} =
ℎ−1
∑
𝑗=0

A𝑗c + AℎX𝑡 +
ℎ−1
∑
𝑗=0

A𝑗b ⋅ 𝔼{𝑢𝑡+ℎ−𝑗 ∣ ℱ𝑡}.

Under the assumoption that 𝜀𝑡+ℎ−𝑗 ∼ 𝑀𝐷𝑆, we have that for all 𝑡

𝔼{𝑢𝑡+1 ∣ ℱ𝑡} = 0.

Therefore, we can apply the tower property of the conditional expectation with ℱ𝑡 an
increasing filtration such that ℱ𝑡 ⊂ ℱ𝑡+1 ⊂ … ℱ𝑡+ℎ, i.e. for example with 𝑡 + 2,

𝔼{𝑢𝑡+2 ∣ ℱ𝑡} = 𝔼{𝔼{𝑢𝑡+2 ∣ ℱ𝑡+1} ∣ ℱ𝑡} = 0,

with 𝑡 + 3,

𝔼{𝑢𝑡+3 ∣ ℱ𝑡} = 𝔼{𝔼{𝑢𝑡+3 ∣ ℱ𝑡+1} ∣ ℱ𝑡} = 𝔼{𝔼{𝔼{𝑢𝑡+3 ∣ ℱ𝑡+2} ∣ ℱ𝑡+1} ∣ ℱ𝑡} = 0.

Therefore

𝔼{X𝑡+ℎ ∣ ℱ𝑡} =
ℎ−1
∑
𝑗=0

A𝑗c + AℎX𝑡,
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where for constant c, the series further simplifies in

ℎ−1
∑
𝑗=0

A𝑗c = (I𝑝 − Aℎ) (I𝑝 − A)−1c,

with I𝑝 the identity matrix (Equation 32.3).

20.2.2 Covariance

Proposition 20.3. Taking the variance of Equation 20.1 on both sides gives

𝕍{X𝑡+ℎ ∣ ℱ𝑡} = 𝜎2
𝑢

ℎ−1
∑
𝑗=0

A𝑗bb⊤(A𝑗)⊤.

Moreover, Assuming 𝑢𝑡 ∼ WN(0, 𝜎2
𝑢), and independence across time, the conditional covariance

is:

ℂ𝑣{X𝑡+ℎ, X𝑡+𝑘 ∣ ℱ𝑡} = 𝜎2
𝑢

min(ℎ,𝑘)−1
∑
𝑗=0

Aℎ−1−𝑗bb⊤(A𝑘−1−𝑗)⊤.

Proof of Proposition 20.3

Proof. Taking the conditional variance gives

𝕍{X𝑡+ℎ ∣ ℱ𝑡} =
ℎ−1
∑
𝑗=0

𝕍{A𝑗b 𝑢𝑡+ℎ−𝑗 ∣ ℱ𝑡} =
ℎ−1
∑
𝑗=0

A𝑗b𝕍{𝑢𝑡+ℎ−𝑗 ∣ ℱ𝑡}b⊤(A𝑗)⊤.

Then, if 𝑢𝑡 is White Noise process, then its variance is constant, hence independent from
𝑡, and equal to 𝜎2

𝑢. For the covariance formula, each X𝑡+ℎ is influenced by past shocks
𝑢𝑡 + ℎ − 𝑗. Since the shocks are uncorrelated across time, only shared shocks affect both
X𝑡+ℎ and X𝑡+𝑘. The number of common shocks is min(ℎ, 𝑘), and each contributes:

ℂ𝑣{Aℎ−1−𝑗b𝑢𝑡+1+𝑗, A𝑘−1−𝑗b𝑢𝑡+1+𝑗} = 𝜎2
𝑢Aℎ−1−𝑗bb⊤(A𝑘−1−𝑗)⊤.
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Example: ARMA(2,3) iterative forecast

Example 20.3. Let’s use Monte Carlo simulations to establish if the results are accurate.

Table 20.1: Theoric long term moments and moments computed on 200 Monte Carlo
simulations (t = 100000).

Covariance Formula MonteCarlo
𝔼{𝑦𝑡} 0.5454545 0.5451258
𝕍{𝑦𝑡} 1.7466575 1.7472192
ℂ𝑣{𝑦𝑡, 𝑦𝑡−1} 1.1317615 1.1322255
ℂ𝑣{𝑦𝑡, 𝑦𝑡−2} 0.8115271 0.8118823
ℂ𝑣{𝑦𝑡, 𝑦𝑡−3} 0.5132223 0.5133506
ℂ𝑣{𝑦𝑡, 𝑦𝑡−4} 0.2756958 0.2758341
ℂ𝑣{𝑦𝑡, 𝑦𝑡−5} 0.1596921 0.1596755

−5.0

−2.5

0.0

2.5

5.0

55 15 25 35 45 5555
Steps ahead (h)

y t

Figure 20.2: ARMA(2,3) simulations with expected value (red) and confidence intervals
with 𝛼 = 0.1 (green), 𝛼 = 0.05 (purple) and 𝛼 = 0.01 (red).
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21 Conditional variance processes

21.1 ARCH(p) process

The auto regressive and conditionally heteroskedastic process (ARCH) were introduced in 1982
by Robert Engle to model the conditional variance of a time series. It is often an empirical
fact in economics that the larger values of time series the larger the variance. Let’s define an
ARCH process of order 𝑝 as:

𝑦𝑡 = 𝔼{𝑦𝑡 ∣ ℱ𝑡−1} + 𝕍{𝑦𝑡 ∣ ℱ𝑡−1}𝑢𝑡
𝔼{𝑦𝑡 ∣ ℱ𝑡−1} = 𝜇

𝕍{𝑦𝑡 ∣ ℱ𝑡−1} = 𝜎2
𝑡 = 𝜔 +

𝑝
∑
𝑖=1

𝛼𝑖(𝑦𝑡−𝑖 − 𝜇)2
(21.1)

where 𝑢𝑡 ∼ MDS(0, 1).

21.1.1 Moments

The conditional mean of an ARCH(p) process (Equation 21.1) is equal to

𝔼{𝑦𝑡 ∣ ℱ𝑡−1} = 𝜇.

and the conditional variance is not stochastic given the information at time 𝑡 − 1 and for a
general ℎ ≥ 1 reads:

𝕍{𝑦𝑡+ℎ ∣ ℱ𝑡} = 𝔼{𝜎2
𝑡+ℎ ∣ ℱ𝑡}.

Proof: Conditional moments ARCH(p)

Proof. Taking the conditional expectation on the process in Equation 21.1 one obtain:

𝔼{𝑦𝑡 ∣ ℱ𝑡−1} = 𝜇 + 𝔼{𝜎𝑡𝑢𝑡 ∣ ℱ𝑡−1} =
= 𝜇 + 𝜎𝑡𝔼{𝑢𝑡 ∣ ℱ𝑡−1} =
= 𝜇

since 𝜎𝑡 is known and not stochastic given the information at 𝑡 − 1 in ℱ𝑡−1 and 𝑢𝑡
conditionally to ℱ𝑡−1 is a Martingale Difference Sequence with mean zero (Equation 18.2).
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The conditional variance of 𝑦 at time 𝑡 + ℎ depends on the conditional expectation of 𝜎2
𝑡 ,

i.e.
𝕍{𝑦𝑡+ℎ ∣ ℱ𝑡} = 𝕍{𝜎𝑡+ℎ𝑢𝑡+ℎ ∣ ℱ𝑡} =

= 𝔼{𝜎2
𝑡+ℎ ∣ ℱ𝑡}𝔼{𝑢2

𝑡+ℎ ∣ ℱ𝑡} − 𝔼{𝜎𝑡+ℎ ∣ ℱ𝑡}𝔼{𝑢𝑡+ℎ ∣ ℱ𝑡} =
= 𝔼{𝜎2

𝑡+ℎ ∣ ℱ𝑡}
since 𝔼{𝑢𝑡+ℎ ∣ ℱ𝑡} = 0 and 𝔼{𝑢2

𝑡+ℎ ∣ ℱ𝑡} = 1.

Stationarity ARCH(p)

Regarding the variance, the long-term expectation of 𝜎2
𝑡 reads

𝔼{𝜎2
𝑡 } = 𝜔

1 − ∑𝑝
𝑖=1 𝛼𝑖

.

where 𝜔 ≠ 0. It is clear that to ensure that the process is stationary the following
condition on the ARCH parameters must be satisfied:

𝑝
∑
𝑖=1

𝛼𝑖 < 1, 𝛼𝑖 > 0

for all 𝑖 ∈ {1, … , 𝑝}.

21.1.2 Example: ARCH(1) process

Let’s simulate an ARCH(1) process with normal residuals, i.e.

𝑦𝑡 = 𝜇 + 𝜎𝑡𝑢𝑡
𝜎2

𝑡 = 𝜔 + 𝛼1(𝑦𝑡−1 − 𝜇)2

where 𝑢𝑡 ∼ 𝒩(0, 1).

21.1.3 Example: ARCH(3) process

Let’s simulate an ARCH(3) process with normal residuals, i.e.

𝑦𝑡 = 𝜇 + 𝜎𝑡𝑢𝑡
𝜎2

𝑡 = 𝜔 + 𝛼1(𝑦𝑡−1 − 𝜇)2 + 𝛼2(𝑦𝑡−2 − 𝜇)2 + 𝛼3(𝑦𝑡−3 − 𝜇)2

where 𝑢𝑡 ∼ 𝒩(0, 1).
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Figure 21.1: On the top an ARCH(1) simulation with its long term mean (red). On the bottom
the correspondent stochastic variance with its long term mean (blue).
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Figure 21.2: On the top an ARCH(3) simulation with its long term mean (red). On the bottom
the correspondent stochastic variance with its long term mean (blue).
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21.2 GARCH(p,q) process

As done with the ARCH(p), with generalized auto regressive conditional heteroskedasticity
(GARCH) we model the dependency of the conditional second moment. It represents a more
parsimonious way to express the conditional variance. A GARCH(p,q) processx is defined
as:

𝑦𝑡 = 𝜇 + 𝜎𝑡𝑢𝑡

𝜎2
𝑡 = 𝜔 +

𝑝
∑
𝑖=1

𝛼𝑖(𝑦𝑡−𝑖 − 𝜇)2 +
𝑞

∑
𝑗=1

𝛽𝑗𝜎2
𝑡−𝑗

where 𝑢𝑡 ∼ MDS(0, 1).

Stationarity GARCH(p,q)

Regarding the variance, the long-term expectation of 𝜎2
𝑡 reads

𝔼{𝜎2
𝑡 } = 𝜔

1 − ∑𝑝
𝑖=1 𝛼𝑖 − ∑𝑞

𝑗=1 𝛽𝑗
. (21.2)

where 𝜔 ≠ 0. It is clear that to ensure that the process is stationary the following
condition on the GARCH parameters must be satisfied:

𝑝
∑
𝑖=1

𝛼𝑖 +
𝑞

∑
𝑗=1

𝛽𝑗 < 1,

with 𝛼𝑖 ≥ 0 and 𝛽𝑗 ≥ 0 for all 𝑖 ∈ {1, … , 𝑝} and 𝑗 ∈ {1, … , 𝑞}.

21.2.1 Example: GARCH(1,1) process

Let’s simulate an GARCH(1,1) process with normal residuals, i.e.

𝑦𝑡 = 𝜇 + 𝜎𝑡𝑢𝑡
𝜎2

𝑡 = 𝜔 + 𝛼1(𝑦𝑡−1 − 𝜇)2 + 𝛽1𝜎2
𝑡−1

where 𝑢𝑡 ∼ 𝒩(0, 1).
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Figure 21.3: On the top a GARCH(1,1) simulation with its long term mean (red). On the
bottom the correspondent stochastic variance with its long term mean (blue).

21.2.2 Example: GARCH(2,3) process

Let’s simulate a GARCH(2,3) process with normal residuals, i.e.

𝑦𝑡 = 𝜇 + 𝜎𝑡𝑢𝑡

𝜎2
𝑡 = 𝜔 +

2
∑
𝑖=1

𝛼𝑖(𝑦𝑡−𝑖 − 𝜇)2 +
3

∑
𝑗=1

𝛽𝑗𝜎2
𝑡−𝑗

where 𝑢𝑡 ∼ 𝒩(0, 1).

21.2.3 Example: GARCH(3,2) process

Let’s simulate a GARCH(3,2) process with normal residuals, i.e.

𝑦𝑡 = 𝜇 + 𝜎𝑡𝑢𝑡

𝜎2
𝑡 = 𝜔 +

3
∑
𝑖=1

𝛼𝑖(𝑦𝑡−𝑖 − 𝜇)2 +
2

∑
𝑗=1

𝛽𝑗𝜎2
𝑡−𝑗

where 𝑢𝑡 ∼ 𝒩(0, 1).
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Figure 21.4: On the top a GARCH(2,3) simulation with its long term mean (red). On the
bottom the correspondent stochastic variance with its long term mean (blue).
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Figure 21.5: On the top a GARCH(3,2) simulation with its long term mean (red). On the
bottom the correspondent stochastic variance with its long term mean (blue).
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21.3 IGARCH

Many variants of the standard GARCH process were developed in literature. For example,
the Integrated Generalized Auto regressive Conditional heteroskedasticity (IGARCH(p,q)) is
a restricted version of the GARCH, where the persistent parameters sum up to one, and imply
a unit root in the GARCH process with the condition

𝑝
∑
𝑖=1

𝛼𝑖 +
𝑞

∑
𝑗=1

𝛽𝑗 = 1.

In GARCH(p, q), the sum of coefficients being less than 1 ensures stationarity (finite uncondi-
tional variance) while in IGARCH(p, q), the sum is exactly 1, so the process is nonstationary
in variance: the conditional variance has a persistent memory, and the shocks to volatility
accumulate over time. The process is strictly stationary under some conditions (see Nelson
(1990)), but it has infinite unconditional variance.
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Figure 21.6: On the top an iGARCH(1,1) simulation with its long term mean (red). On the
bottom the correspondent stochastic variance with its long term mean (blue).

21.4 GARCH-M

The GARCH in-mean (GARCH-M) model adds a stochastic term into the mean equation.
This is motivated especially in financial theories (e.g., risk-return trade-off) suggesting that
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expected returns may depend on volatility, i.e.

𝑦𝑡 = 𝜇 + 𝜎2
𝑡 𝜆 + 𝑒𝑡

𝑒𝑡 = 𝜎𝑡𝑢𝑡

𝜎2
𝑡 = 𝜔 +

𝑝
∑
𝑖=1

𝛼𝑖𝑒2
𝑡−𝑖 +

𝑞
∑
𝑗=1

𝛽𝑗𝜎2
𝑡−𝑗

The effect of the parameter 𝜆 is a shift of the mean of the process. If 𝑦𝑡 are for example financial
returns a 𝜆 > 0 would imply that higher volatility increases expected return, consistent with
risk-premium theories. Instead, when 𝜆 < 0, it could reflect behavioral phenomena or model
misspecification. The unconditional mean of 𝑦𝑡 became

𝔼{𝑦𝑡} = 𝜇 + 𝔼{𝜎2
𝑡 }𝜆,

while the conditional mean

𝔼{𝑦𝑡+ℎ ∣ ℱ𝑡} = 𝜇 + 𝜆𝔼{𝜎2
𝑡+ℎ ∣ ℱ𝑡}.
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Figure 21.7: GARCH-M(1,1) simulation (top) with the conditional (green) and long term (red)
expected values. Simulated GARCh variance (bottom) with the long term ex-
pected value (red).
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22 GARCH(1,1) moments

Let’s consider a very general setup for GARCH(1,1) process where we do not assume that the
GARCH residuals

1. Has expected value equal to zero, i.e. 𝔼{𝑢𝑡} = 0.
2. Has NOT necessary a second moment that is constant and equal to one, i.e. 𝔼{𝑢2

𝑡 }
possibly time dependent (deterministic).

3. Has NOT necessary a fourth moment that is constant and equal to 3, i.e. 𝔼{𝑢4
𝑡 } possibly

time dependent (deterministic).

The process we refer to has the form of a standard GARCH(1,1), i.e.

𝑦𝑡 = 𝜎𝑡𝑢𝑡
𝜎2

𝑡 = 𝜔 + 𝛼1𝑦2
𝑡−1 + 𝛽1𝜎2

𝑡−1

where 𝑢𝑡 ∼ WN(𝜇𝑡, 𝜎𝑡).

22.1 First moment 𝜎2
𝑡

22.1.1 Short-term

Given the information at time 𝑡 − 1, the expected value of the GARCH variance after ℎ-steps
can be expanded as:

𝔼{𝜎2
𝑡+ℎ ∣ ℱ𝑡−1} = 𝜔 (1 +

ℎ−1
∑
𝑗=1

𝑗
∏
𝑖=1

𝜆𝑡+ℎ−𝑖) + 𝜎2
𝑡

ℎ
∏
𝑗=1

𝜆𝑡+ℎ−𝑗, (22.1)

with ℎ ≥ 1 and where in general

𝜆𝑡+ℎ−𝑖 = 𝛼1𝔼{𝑢2
𝑡+ℎ−𝑖} + 𝛽1. (22.2)

The iteration between two consecutive times reads

𝔼{𝜎2
𝑡+ℎ−𝑠 ∣ ℱ𝑡−1} = 𝜔 + 𝜆𝑡+ℎ−𝑠−1𝔼{𝜎2

𝑡+ℎ−𝑠−1 ∣ ℱ𝑡−1}.
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Proof: GARCH(1,1) iterative expectation

Proof. Let’s start by taking the conditional expectation of the GARCH(1,1) variance at
time 𝑡 given the information up to 𝑡 − 1. In this case it is fully known at time 𝑡 given the
information in 𝑡 − 1, i.e.

𝔼{𝜎2
𝑡 ∣ ℱ𝑡−1} = 𝜔 + 𝛼1𝑦2

𝑡−1 + 𝛽1𝜎2
𝑡−1.

Then, let’s iterate the expectation at time 𝑡 + 1, i.e.

𝔼{𝜎2
𝑡+1 ∣ ℱ𝑡−1} = 𝜔 + 𝛼1𝔼{𝑦2

𝑡 } + 𝛽1𝔼{𝜎2
𝑡 ∣ ℱ𝑡−1},

and let’s substitute the expression for the squared residuals 𝑦2
𝑡 = 𝜎2

𝑡 𝑢2
𝑡 . Since 𝜎2

𝑡 at time
𝑡 − 1 is known we have:

𝔼{𝜎2
𝑡+1 ∣ ℱ𝑡−1} = 𝜔 + (𝛼1𝔼{𝑢2

𝑡 } + 𝛽1)𝔼{𝜎2
𝑡 ∣ ℱ𝑡−1} = 𝜔 + 𝜆𝑡𝜎2

𝑡 ,

where
𝜆𝑡 = 𝛼1𝔼{𝑢2

𝑡 } + 𝛽1.

Iterating the expectation at time 𝑡 + 2

𝔼{𝜎2
𝑡+2 ∣ ℱ𝑡−1} = 𝜔 + 𝜆𝑡+1𝔼{𝜎2

𝑡+1 ∣ ℱ𝑡−1}
= 𝜔 + 𝜆𝑡+1 (𝜔 + 𝜆𝑡𝜎2

𝑡 )
= 𝜔(1 + 𝜆𝑡+1) + 𝜆𝑡+1𝜆𝑡𝜎2

𝑡

Then, at time 𝑡 + 3

𝔼{𝜎2
𝑡+3 ∣ ℱ𝑡−1} = 𝜔 + 𝜆𝑡+2 𝔼{𝜎2

𝑡+2 ∣ ℱ𝑡−1}
= 𝜔 + 𝜆𝑡+2 (𝜔(1 + 𝜆𝑡+1) + 𝜆𝑡+1𝜆𝑡𝜎2

𝑡 )
= 𝜔 (1 + 𝜆𝑡+2 + 𝜆𝑡+2𝜆𝑡+1) + 𝜆𝑡+2𝜆𝑡+1𝜆𝑡𝜎2

𝑡

In general, after ℎ-steps one can write the expansion

𝔼{𝜎2
𝑡+ℎ ∣ ℱ𝑡−1} = 𝜔 (1 +

ℎ−1
∑
𝑗=1

𝑗
∏
𝑖=1

𝜆𝑡+ℎ−𝑖) + 𝜎2
𝑡

ℎ
∏
𝑗=1

𝜆𝑡+ℎ−𝑗

with the convention that an empty product is 1.
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Example: GARCH(1,1) iterative first moment

Example 22.1. Expanding the expression in Equation 22.1 with ℎ = 1 one obtain

𝔼{𝜎2
𝑡+1 ∣ ℱ𝑡−1} = 𝜔 (1 +

0
∑
𝑗=1

𝑗
∏
𝑖=1

𝜆𝑡+1−𝑖) + 𝜎2
𝑡

1
∏
𝑗=1

𝜆𝑡+1−𝑗 =

= 𝜔 + 𝜎2
𝑡 𝜆𝑡

with ℎ = 2

𝔼{𝜎2
𝑡+2 ∣ ℱ𝑡−1} = 𝜔 (1 +

1
∑
𝑗=1

𝑗
∏
𝑖=1

𝜆𝑡+2−𝑖) + 𝜎2
𝑡

2
∏
𝑗=1

𝜆𝑡+2−𝑗 =

= 𝜔(1 + 𝜆𝑡+1) + 𝜎2
𝑡 (𝜆𝑡+1𝜆𝑡)

with ℎ = 3

𝔼{𝜎2
𝑡+3 ∣ ℱ𝑡−1} = 𝜔 (1 +

2
∑
𝑗=1

𝑗
∏
𝑖=1

𝜆𝑡+3−𝑖) + 𝜎2
𝑡

3
∏
𝑗=1

𝜆𝑡+3−𝑗 =

= 𝜔(1 + 𝜆𝑡+2 + 𝜆𝑡+1𝜆𝑡+2) + 𝜎2
𝑡 (𝜆𝑡+2𝜆𝑡+1𝜆𝑡)

and so on.

Moment Step Formula Iteration
Difference.
(%)

𝔼{𝜎2
𝑡+0 ∣ ℱ𝑡−1} 0 1.200 1.200 0%

𝔼{𝜎2
𝑡+1 ∣ ℱ𝑡−1} 1 1.235 1.235 0%

𝔼{𝜎2
𝑡+2 ∣ ℱ𝑡−1} 2 1.250 1.250 0%

𝔼{𝜎2
𝑡+3 ∣ ℱ𝑡−1} 3 1.258 1.258 0%

𝔼{𝜎2
𝑡+4 ∣ ℱ𝑡−1} 4 1.261 1.261 0%

𝔼{𝜎2
𝑡+5 ∣ ℱ𝑡−1} 5 1.263 1.263 0%

𝔼{𝜎2
𝑡+6 ∣ ℱ𝑡−1} 6 1.263 1.263 0%

𝔼{𝜎2
𝑡+7 ∣ ℱ𝑡−1} 7 1.264 1.264 0%

𝔼{𝜎2
𝑡+8 ∣ ℱ𝑡−1} 8 1.264 1.264 0%

𝔼{𝜎2
𝑡+9 ∣ ℱ𝑡−1} 9 1.264 1.264 0%

𝔼{𝜎2
𝑡+10 ∣ ℱ𝑡−1} 10 1.264 1.264 0%

Table 22.1: Forecasted expectation of GARCH(1,1) variance with iteration and with for-
mula.
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22.1.2 Long-term

If 𝔼{𝑢2
𝑡 } is constant for all 𝑡 then, 𝜆 = 𝛼1𝔼{𝑢2

𝑡 } + 𝛽1, became a constant and the formula
simplifies to

𝔼{𝜎2
𝑡+ℎ ∣ ℱ𝑡−1} = 𝜎2

∞ + 𝜆ℎ(𝜎2
𝑡 − 𝜎2

∞), (22.3)

where 𝜎2
∞ denotes the long-term expected GARCH variance as ℎ → ∞, i.e.

lim
ℎ→∞

𝔼{𝜎2
𝑡+ℎ ∣ ℱ𝑡−1} = 𝜔

1 − 𝜆 = 𝜎2
∞. (22.4)

It follows that, under the standard assumption that 𝑢𝑡 ∼ WN(0, 1), then one obtain the classic
expression

𝔼{𝜎2
𝑡+ℎ ∣ ℱ𝑡−1} = 𝜎2

∞ + (𝛼1 + 𝛽1)ℎ(𝜎2
𝑡 − 𝜎2

∞) (22.5)

where 𝜎2
∞ denotes the unconditional expectation as Equation 22.4 with 𝔼{𝑢2

𝑡 } = 1.

GARCH(1,1) long-term expectation

Proof. Let’s verify the formula in Equation 22.5 for constant 𝜆𝑡 (Equation 22.2) for all 𝑡,
i.e.

𝜆 = 𝛼1𝔼{𝑢2
𝑡 } + 𝛽1

In this case the iterative formula (Equation 22.1) simplifies, i.e.

𝔼{𝜎2
𝑡+ℎ ∣ ℱ𝑡−1} = 𝜔 (1 +

ℎ−1
∑
𝑗=1

𝑗
∏
𝑖=1

𝜆) + 𝜎2
𝑡

ℎ
∏
𝑗=1

𝜆 =

= 𝜔
ℎ−1
∑
𝑗=0

𝜆𝑗 + 𝜎2
𝑡 𝜆ℎ =

= 𝜔 (1 − 𝜆ℎ

1 − 𝜆 ) + 𝜎2
𝑡 𝜆ℎ

= 𝜔
1 − 𝜆 + 𝜆ℎ (𝜎2

𝑡 − 𝜔
1 − 𝜆)

Taking the limit as ℎ → ∞ gives the long term stationary variance, i.e.

lim
ℎ→∞

𝔼{𝜎2
𝑡+ℎ ∣ ℱ𝑡−1} = 𝜔

1 − 𝜆 = 𝜎2
∞ ⟺ 𝜆 < 1

Hence, the general expression became

𝔼{𝜎2
𝑡+ℎ ∣ ℱ𝑡−1} = 𝜎2

∞ + 𝜆ℎ(𝜎2
𝑡 − 𝜎2

∞)
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Example: GARCH(1,1) long-term first moment

Example 22.2.

Moment Formula MonteCarlo Difference (%)
𝜎2

∞ 1.264 1.264 -0.0056%
Table 22.2: Forecasted long-term expectation of GARCH(1,1) variance with formula and

by Monte Carlo simulations.

22.2 Second moment 𝜎2
𝑡

22.2.1 Short term

The second moment admits an iterative formula, i.e.

𝔼{𝜎4
𝑡+ℎ ∣ ℱ𝑡−1} =

ℎ
∑
𝑖=1

𝑏𝑡+ℎ−𝑖
𝑖−1
∏
𝑗=1

𝛾𝑡+ℎ−𝑗 + 𝜎4
𝑡

ℎ
∏
𝑗=1

𝛾𝑡+ℎ−𝑗 (22.6)

where

𝛾𝑡+ℎ−𝑗 = 𝛼2
1𝔼{𝑢4

𝑡+ℎ−𝑗} + 𝛽1(2𝛼1𝔼{𝑢2
𝑡+ℎ−𝑗} + 𝛽1) (22.7)

while
𝑏𝑡+ℎ−𝑖 = 𝜔(𝜔 + 2𝜆𝑡+ℎ−𝑖𝔼{𝜎2

𝑡+ℎ−𝑖 ∣ ℱ𝑡−1}) (22.8)
with 𝜆𝑡+ℎ−𝑖 as in Equation 22.2.

Proof: Iterative formula for the second moment of GARCH(1,1) variance

Proof. Starting from
𝜎4

𝑡+1 = (𝜔 + 𝛼1𝑒2
𝑡 + 𝛽1𝜎2

𝑡 )2

and substitute the definition of 𝑒2
𝑡 = 𝜎2

𝑡 𝑢2
𝑡 , i.e.

𝜎4
𝑡+1 = (𝜔 + (𝛼1𝑢2

𝑡 + 𝛽1)𝜎2
𝑡 )2 =

= 𝜔2 + 2𝜔(𝛼1𝑢2
𝑡 + 𝛽1)𝜎2

𝑡 + (𝛼1𝑢2
𝑡 + 𝛽1)2𝜎4

𝑡

Then, let’s take the conditional expectation on both sides:

𝔼{𝜎4
𝑡+1 ∣ ℱ𝑡} = 𝜔2 + 𝔼{(𝛼1𝑢2

𝑡 + 𝛽1)2}𝔼{𝜎4
𝑡 ∣ ℱ𝑡} + 2𝜔(𝛼1𝔼{𝑢2

𝑡 } + 𝛽1)𝔼{𝜎2
𝑡 ∣ ℱ𝑡} =

= 𝜔2 + 𝔼{(𝛼1𝑢2
𝑡 + 𝛽1)2}𝔼{𝜎4

𝑡 ∣ ℱ𝑡} + 2𝜔𝜆𝑡𝔼{𝜎2
𝑡 ∣ ℱ𝑡}
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where 𝜆𝑡 = 𝛼1𝔼{𝑢2
𝑡 } + 𝛽1. Then note that:

𝔼{(𝛼1𝑢2
𝑡 + 𝛽1)2} = 𝔼{𝛼2

1𝑢4
𝑡 + 𝛽2

1 + 2𝛼1𝛽1𝑢2
𝑡 } =

= 𝛼2
1𝔼{𝑢4

𝑡 } + 𝛽1(2𝛼1𝔼{𝑢2
𝑡 } + 𝛽1) = 𝛾𝑡

Hence, we can write the expectation in terms of the previous expectation.

𝔼{𝜎4
𝑡+1 ∣ ℱ𝑡} = 𝜔2 + 𝛾𝑡𝔼{𝜎4

𝑡 ∣ ℱ𝑡} + 2𝜔𝜆𝑡𝔼{𝜎2
𝑡 ∣ ℱ𝑡} =

= 𝜔(𝜔 + 2𝜆𝑡𝔼{𝜎2
𝑡 ∣ ℱ𝑡}) + 𝛾𝑡𝔼{𝜎4

𝑡 ∣ ℱ𝑡} =
= 𝑏𝑡 + 𝛾𝑡𝔼{𝜎4

𝑡 ∣ ℱ𝑡}

where 𝑏𝑡 = 𝜔(𝜔 + 2𝜆𝑡𝔼{𝜎2
𝑡 ∣ ℱ𝑡}). Iterating at time 𝑡 + 2:

𝔼{𝜎4
𝑡+2 ∣ ℱ𝑡} = 𝑏𝑡+1 + 𝛾𝑡+1𝔼{𝜎4

𝑡+1 ∣ ℱ𝑡} =
= 𝑏𝑡+1 + 𝛾𝑡+1𝑏𝑡 + 𝛾𝑡+1𝛾𝑡𝔼{𝜎4

𝑡 ∣ ℱ𝑡}

At time 𝑡 + 3

𝔼{𝜎4
𝑡+3 ∣ ℱ𝑡} = 𝑏𝑡+2 + 𝛾𝑡+2𝔼{𝜎4

𝑡+2 ∣ ℱ𝑡} =
= 𝑏𝑡+2 + 𝛾𝑡+2𝑏𝑡+1 + 𝛾𝑡+2𝛾𝑡+1𝑏𝑡 + 𝛾𝑡+2𝛾𝑡+1𝛾𝑡𝔼{𝜎4

𝑡 ∣ ℱ𝑡}

Hence, in general

𝔼{𝜎4
𝑡+ℎ ∣ ℱ𝑡} =

ℎ
∑
𝑖=1

𝑏𝑡+ℎ−𝑖
𝑖−1
∏
𝑗=1

𝛾𝑡+ℎ−𝑗 + 𝜎4
𝑡

ℎ
∏
𝑗=1

𝛾𝑡+ℎ−𝑗

where we denote as

𝛾𝑡 = 𝛼2
1𝔼{𝑢4

𝑡 } + 𝛽1(2𝛼1𝔼{𝑢2
𝑡 } + 𝛽1)

𝜆𝑡 = 𝛼1𝔼{𝑢2
𝑡 } + 𝛽1

𝑏𝑡 = 𝜔2 + 2𝜆𝑡𝜔𝔼{𝜎2
𝑡 ∣ ℱ𝑡}

Example: GARCH(1,1) iterative second moment

Example 22.3. With ℎ = 1

𝔼{𝜎4
𝑡+1 ∣ ℱ𝑡} =

1
∑
𝑖=1

𝑏𝑡+1−𝑖
𝑖−1
∏
𝑗=1

𝛾𝑡+1−𝑗 + 𝜎4
𝑡

1
∏
𝑗=1

𝛾𝑡+1−𝑗 =

= 𝑏𝑡 + 𝛾𝑡𝜎4
𝑡
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With ℎ = 2

𝔼{𝜎4
𝑡+2 ∣ ℱ𝑡} =

2
∑
𝑖=1

𝑏𝑡+2−𝑖
𝑖−1
∏
𝑗=1

𝛾𝑡+2−𝑗 + 𝜎4
𝑡

2
∏
𝑗=1

𝛾𝑡+2−𝑗 =

= 𝑏𝑡+1

0
∏
𝑗=1

𝛾𝑡+2−𝑗 + 𝑏𝑡
1

∏
𝑗=1

𝛾𝑡+2−𝑗 + 𝜎4
𝑡 𝛾𝑡+1𝛾𝑡 =

= 𝑏𝑡+1 + 𝑏𝑡𝛾𝑡+1 + 𝜎4
𝑡 𝛾𝑡+1𝛾𝑡

With ℎ = 3

𝔼{𝜎4
𝑡+3 ∣ ℱ𝑡} =

3
∑
𝑖=1

𝑏𝑡+3−𝑖
𝑖−1
∏
𝑗=1

𝛾𝑡+3−𝑗 + 𝜎4
𝑡

3
∏
𝑗=1

𝛾𝑡+3−𝑗 =

= 𝑏𝑡+2

0
∏
𝑗=1

𝛾𝑡+3−𝑗 + 𝑏𝑡+1
1

∏
𝑗=1

𝛾𝑡+3−𝑗 + 𝑏𝑡
2

∏
𝑗=1

𝛾𝑡+3−𝑗 + 𝜎4
𝑡 𝛾𝑡+2𝛾𝑡+1𝛾𝑡 =

= 𝑏𝑡+2 + 𝑏𝑡+1𝛾𝑡+2 + 𝑏𝑡𝛾𝑡+2𝛾𝑡+1 + 𝜎4
𝑡 𝛾𝑡+2𝛾𝑡+1𝛾𝑡

and so on.

Moment step Formula Iteration Difference
𝔼{𝜎4

𝑡+0 ∣ ℱ𝑡−1} 0 1.440000 1.440000 0%
𝔼{𝜎4

𝑡+1 ∣ ℱ𝑡−1} 1 1.559380 1.559380 0%
𝔼{𝜎4

𝑡+2 ∣ ℱ𝑡−1} 2 1.609123 1.609123 0%
𝔼{𝜎4

𝑡+3 ∣ ℱ𝑡−1} 3 1.630762 1.630762 0%
𝔼{𝜎4

𝑡+4 ∣ ℱ𝑡−1} 4 1.640413 1.640413 0%
𝔼{𝜎4

𝑡+5 ∣ ℱ𝑡−1} 5 1.644775 1.644775 0%
𝔼{𝜎4

𝑡+6 ∣ ℱ𝑡−1} 6 1.646762 1.646762 0%
𝔼{𝜎4

𝑡+7 ∣ ℱ𝑡−1} 7 1.647669 1.647669 0%
𝔼{𝜎4

𝑡+8 ∣ ℱ𝑡−1} 8 1.648085 1.648085 0%
𝔼{𝜎4

𝑡+9 ∣ ℱ𝑡−1} 9 1.648275 1.648275 0%
𝔼{𝜎4

𝑡+10 ∣ ℱ𝑡−1} 10 1.648363 1.648363 0%
Table 22.3: Forecasted second moment of GARCH(1,1) variance with iteration and with

formula.
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22.2.2 Long-term

If 𝔼{𝑢2
𝑡 } and 𝔼{𝑢3

𝑡 } are constant for all 𝑡 then the formula simplifies to

𝔼{𝜎4
𝑡+ℎ ∣ ℱ𝑡−1} = (𝜔2 + 2𝜔𝜆𝜎2

∞) (1 − 𝛾ℎ

1 − 𝛾 ) + 2𝜔𝜎2
∞𝜆ℎ (𝜆(𝜆ℎ − (1 + 𝛾)ℎ)

𝜆ℎ(𝜆 − 1 − 𝛾) ) + 𝜎4
𝑡 𝛾ℎ (22.9)

where 𝜎2
∞ denotes the long-term expected GARCH variance as ℎ → ∞, i.e.

𝜎4
∞ = lim

ℎ→∞
𝔼{𝜎4

𝑡+ℎ ∣ ℱ𝑡−1} = 𝜔2(1 + 𝛼1𝔼{𝑢2
𝑡 } + 𝛽1)

(1 − 𝛼1𝔼{𝑢2
𝑡 } − 𝛽1)(1 − 𝛼2

1𝔼{𝑢4
𝑡 } − 2𝛼1𝛽1𝔼{𝑢2

𝑡 } − 𝛽2
1) . (22.10)

It follows that, under normality 𝑢𝑡 ∼ 𝒩(0, 1) we have that 𝔼{𝑢2
𝑡 } = 1 and 𝔼{𝑢4

𝑡 } = 3. Substi-
tuting, one obtain the same result as in Bollerslev (1986), i.e.

𝜎4
∞ = 𝜔2(1 + 𝛼1 + 𝛽1)

(1 − 𝛼1 − 𝛽1)(1 − 3𝛼2
1 − 2𝛼1𝛽1 − 𝛽2

1) .

GARCH(1,1) long-term second moment

Proof. Under the assumption of constant second and fourth moments of 𝑢𝑡 one can
simplify the expressions, i.e.

𝛾 = 𝛼2
1𝔼{𝑢4

𝑡 } + 𝛽1(2𝛼1𝔼{𝑢2
𝑡 } + 𝛽1)

𝑏𝑡+ℎ−𝑖 = 𝜔(𝜔 + 2𝜆𝔼{𝜎2
𝑡+ℎ−𝑖 ∣ ℱ𝑡−1})

𝜆 = 𝛼1𝔼{𝑢2
𝑡 } + 𝛽1

Recalling the expression of the expectation of the GARCH variance with constant mo-
ments in Equation 22.3 one can write

𝑏𝑡+ℎ−𝑖 = 𝜔2 + 2𝜔𝜆𝜎2
∞ + 2𝜔𝜆ℎ−𝑖−1𝜎2

∞

Substituting the above expression into Equation 22.6 one obtain

𝔼{𝜎4
𝑡+ℎ ∣ ℱ𝑡−1} =

ℎ
∑
𝑖=1

(𝜔2 + 2𝜔𝜆𝜎2
∞ + 2𝜔𝜆ℎ−𝑖−1𝜎2

∞) 𝛾𝑖−1 + 𝜎4
𝑡 𝛾ℎ

= (𝜔2 + 2𝜔𝜆𝜎2
∞)

ℎ
∑
𝑖=1

𝛾𝑖−1 + 2𝜔𝜎2
∞𝜆ℎ

ℎ
∑
𝑖=1

( 1
𝜆)

𝑖−1
𝛾𝑖−1 + 𝜎4

𝑡 𝛾ℎ =

= (𝜔2 + 2𝜔𝜆𝜎2
∞)

ℎ−1
∑
𝑖=0

𝛾𝑖 + 2𝜔𝜎2
∞𝜆ℎ

ℎ−1
∑
𝑖=0

(1 + 𝛾
𝜆 )

𝑖
+ 𝜎4

𝑡 𝛾ℎ
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Notably
ℎ−1
∑
𝑖=0

𝛾𝑖 = 1 − 𝛾ℎ

1 − 𝛾
and

ℎ−1
∑
𝑖=0

(1 + 𝛾
𝜆 )

𝑖
= 1 − (1+𝛾)ℎ

𝜆ℎ

1 − 1+𝛾
𝜆

= 𝜆(𝜆ℎ − (1 + 𝛾)ℎ)
𝜆ℎ(𝜆 − 1 − 𝛾)

Hence,

𝔼{𝜎4
𝑡+ℎ ∣ ℱ𝑡−1} = (𝜔2 + 2𝜔𝜆𝜎2

∞) (1 − 𝛾ℎ

1 − 𝛾 ) + 2𝜔𝜎2
∞𝜆ℎ (𝜆(𝜆ℎ − (1 + 𝛾)ℎ)

𝜆ℎ(𝜆 − 1 − 𝛾) ) + 𝜎4
𝑡 𝛾ℎ

Taking the limit as ℎ → 𝑖𝑛𝑓𝑡𝑦, the second and third terms converges to zero if 𝜆 < 1,
therefore

lim
ℎ→∞

𝔼{𝜎4
𝑡+ℎ ∣ ℱ𝑡−1} = 𝜔2 + 2𝜔𝜆𝜎2

∞
1 − 𝛾

More explicitly,

lim
ℎ→∞

𝔼{𝜎4
𝑡+ℎ ∣ ℱ𝑡−1} = 𝜔2(1 + 2 𝜆

1−𝜆)
1 − 𝛼2

1𝔼{𝑢4
𝑡 } − 2𝛼1𝛽1𝔼{𝑢2

𝑡 } − 𝛽2
1

=

= 𝜔2(1 + 𝜆)
(1 − 𝜆)(1 − 𝛼2

1𝔼{𝑢4
𝑡 } − 2𝛼1𝛽1𝔼{𝑢2

𝑡 } − 𝛽2
1) =

= 𝜔2(1 + 𝛼1𝔼{𝑢2
𝑡 } + 𝛽1)

(1 − 𝛼1𝔼{𝑢2
𝑡 } − 𝛽1)(1 − 𝛼2

1𝔼{𝑢4
𝑡 } − 2𝛼1𝛽1𝔼{𝑢2

𝑡 } − 𝛽2
1)

Moment Formula MonteCarlo Difference
𝜎4

∞ 1.648437 1.648712 -0.0167%
Table 22.4: Forecasted long-term second moment of GARCH(1,1) variance with formula

and by Monte Carlo simulations.
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22.3 Variance 𝜎2
𝑡

22.3.1 Short term

The conditional variance of 𝜎2
𝑡 with ℎ ≥ 1 reads

𝕍{𝜎2
𝑡+ℎ ∣ ℱ𝑡−1} = 𝔼{𝜎4

𝑡+ℎ ∣ ℱ𝑡−1} − (𝔼{𝜎2
𝑡+ℎ ∣ ℱ𝑡−1})2.

Example: GARCH(1,1) iterative variance

Example 22.4.

Moment step Formula Iteration Difference
𝕍{𝜎2

𝑡+1 ∣ ℱ𝑡−1} 1 0.0352420 0.0352420 0%
𝕍{𝜎2

𝑡+2 ∣ ℱ𝑡−1} 2 0.0455820 0.0455820 0%
𝕍{𝜎2

𝑡+3 ∣ ℱ𝑡−1} 3 0.0489759 0.0489759 0%
𝕍{𝜎2

𝑡+4 ∣ ℱ𝑡−1} 4 0.0502199 0.0502199 0%
𝕍{𝜎2

𝑡+5 ∣ ℱ𝑡−1} 5 0.0507180 0.0507180 0%
𝕍{𝜎2

𝑡+6 ∣ ℱ𝑡−1} 6 0.0509296 0.0509296 0%
𝕍{𝜎2

𝑡+7 ∣ ℱ𝑡−1} 7 0.0510227 0.0510227 0%
𝕍{𝜎2

𝑡+8 ∣ ℱ𝑡−1} 8 0.0510646 0.0510646 0%
𝕍{𝜎2

𝑡+9 ∣ ℱ𝑡−1} 9 0.0510835 0.0510835 0%
𝕍{𝜎2

𝑡+10 ∣ ℱ𝑡−1} 10 0.0510922 0.0510922 0%
Table 22.5: Forecasted variance of GARCH(1,1) variance with iteration and with formula.

22.3.2 Long term

The long-term variance of 𝜎2
𝑡 reads explicitely

𝕍{𝜎2
𝑡 } = 𝜎4

∞ − (𝜎2
∞)2.

Example: GARCH(1,1) long-term variance

Example 22.5.

Moment Formula MonteCarlo Difference
𝕍{𝜎2

∞} 0.0510995 0.0511939 -0.1847%
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Table 22.6: Forecasted long-term variance of GARCH(1,1) variance with formula and by
Monte Carlo simulations.

22.4 First moment 𝜎𝑡

22.4.1 Short term

The expected value of the GARCH std. deviation can be approximated as 𝜎𝑡+ℎ = (𝜎2
𝑡+ℎ)1/2

with a Taylor expansion

𝔼{𝜎𝑡+ℎ ∣ ℱ𝑡−1} ≈ √𝔼{𝜎2
𝑡+ℎ ∣ ℱ𝑡−1} + 1

8
𝕍{𝜎2

𝑡+ℎ ∣ ℱ𝑡−1}
𝔼{𝜎2

𝑡+ℎ ∣ ℱ𝑡−1} 3
2

.

Approximated GARCH(1,1) std. deviation with Taylor expansion.

Proof. Let’s 𝑋 be a non-negative random variable, and let’s say one want to approximate:

𝔼{
√

𝑋}.

Let 𝑓(𝑥) = √𝑥 and expand 𝑓(𝑥) around the point 𝜇 = 𝔼{𝑋}, i.e.
√

𝑋 ≈ √𝜇 + 1
2𝜇−1/2(𝑋 − 𝜇) − 1

8𝜇−3/2(𝑋 − 𝜇)2,

and take the expectation

𝔼{
√

𝑋} ≈ √𝜇 + 1
2𝜇−1/2 (𝔼{𝑋} − 𝜇) − 1

8𝜇−3/2𝔼{(𝑋 − 𝜇)2},

where 𝔼{𝑋} − 𝜇 = 0 and 𝔼{(𝑋 − 𝜇)2} = 𝕍{𝑋}. Applying this result to the random
variable 𝜎2

𝑡+ℎ with 1 < ℎ and let’s approximate around the expected value with a Taylor
expansion, i.e.

𝜎𝑡+ℎ = √𝜎2
𝑡+ℎ ≈ √𝔼{𝜎2

𝑡+ℎ ∣ ℱ𝑡} + 1
2

(𝜎2
𝑡+ℎ − 𝔼{𝜎2

𝑡+ℎ ∣ ℱ𝑡})
√𝔼{𝜎2

𝑡+ℎ ∣ ℱ𝑡}
− 1

8
(𝜎2

𝑡+ℎ − 𝔼{𝜎2
𝑡+ℎ ∣ ℱ𝑡})2

√𝔼{𝜎2
𝑡+ℎ ∣ ℱ𝑡}3

,

Taking the expectation gives the result.

𝔼{𝜎𝑡+ℎ ∣ ℱ𝑡} ≈ √𝔼{𝜎2
𝑡+ℎ ∣ ℱ𝑡} − 1

8
𝕍{𝜎2

𝑡+ℎ ∣ ℱ𝑡}
√𝔼{𝜎2

𝑡+ℎ ∣ ℱ𝑡}3
.
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Example: GARCH(1,1) std.deviation iterative expectation.

Example 22.6.

Moment step Formula Iteration Difference
𝔼{𝜎𝑡+0 ∣ ℱ𝑡−1} 0 1.095445 1.095445 0%
𝔼{𝜎𝑡+1 ∣ ℱ𝑡−1} 1 1.107896 1.107896 0%
𝔼{𝜎𝑡+2 ∣ ℱ𝑡−1} 2 1.114145 1.114145 0%
𝔼{𝜎𝑡+3 ∣ ℱ𝑡−1} 3 1.117128 1.117128 0%
𝔼{𝜎𝑡+4 ∣ ℱ𝑡−1} 4 1.118522 1.118522 0%
𝔼{𝜎𝑡+5 ∣ ℱ𝑡−1} 5 1.119168 1.119168 0%
𝔼{𝜎𝑡+6 ∣ ℱ𝑡−1} 6 1.119466 1.119466 0%
𝔼{𝜎𝑡+7 ∣ ℱ𝑡−1} 7 1.119603 1.119603 0%
𝔼{𝜎𝑡+8 ∣ ℱ𝑡−1} 8 1.119666 1.119666 0%
𝔼{𝜎𝑡+9 ∣ ℱ𝑡−1} 9 1.119694 1.119694 0%
𝔼{𝜎𝑡+10 ∣ ℱ𝑡−1} 10 1.119708 1.119708 0%
Table 22.7: Forecasted expectation of GARCH(1,1) std. deviation with iteration and

with formula.

22.4.2 Long term

The unconditional expected GARCH(1,1) std. deviation

𝜎∞ ≈ √𝜎2∞ + 1
8

𝕍{𝜎2
∞}

(𝜎2∞) 3
2

.

Example: GARCH(1,1) std. deviation long-term expectation.

Example 22.7.

Moment Formula MonteCarlo Difference
𝜎∞ 1.119719 1.120497 -0.0695%

Table 22.8: Long-term expectation of GARCH(1,1) std. deviation with approximated
formula and by Monte Carlo simulations.
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22.5 Variance 𝜎𝑡

22.5.1 Short term

The variance of the GARCH std. deviation can be approximated

𝕍{𝜎𝑡+ℎ ∣ ℱ𝑡−1} ≈ 𝔼{𝜎2
𝑡+ℎ ∣ ℱ𝑡−1} − 𝔼{𝜎𝑡+ℎ ∣ ℱ𝑡−1}2.

Example: GARCH(1,1) std. deviation iterative variance

Example 22.8.

Moment step Formula Iteration Difference
𝕍{𝜎𝑡+1 ∣ ℱ𝑡−1} 1 0.0071262 0.0071262 0%
𝕍{𝜎𝑡+2 ∣ ℱ𝑡−1} 2 0.0090968 0.0090968 0%
𝕍{𝜎𝑡+3 ∣ ℱ𝑡−1} 3 0.0097164 0.0097164 0%
𝕍{𝜎𝑡+4 ∣ ℱ𝑡−1} 4 0.0099365 0.0099365 0%
𝕍{𝜎𝑡+5 ∣ ℱ𝑡−1} 5 0.0100227 0.0100227 0%
𝕍{𝜎𝑡+6 ∣ ℱ𝑡−1} 6 0.0100589 0.0100589 0%
𝕍{𝜎𝑡+7 ∣ ℱ𝑡−1} 7 0.0100747 0.0100747 0%
𝕍{𝜎𝑡+8 ∣ ℱ𝑡−1} 8 0.0100817 0.0100817 0%
𝕍{𝜎𝑡+9 ∣ ℱ𝑡−1} 9 0.0100849 0.0100849 0%
𝕍{𝜎𝑡+10 ∣ ℱ𝑡−1} 10 0.0100864 0.0100864 0%
Table 22.9: Forecasted variance of GARCH(1,1) std. deviation with iteration and with

formula.

22.5.2 Long term

The long-term variance of the GARCH std. deviation can be approximated as

𝕍{𝜎∞} ≈ 𝜎2
∞ − (𝜎∞)2.

Example: GARCH(1,1) std. deviation long-term variance

Example 22.9.
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Moment Formula MonteCarlo Difference
𝕍{𝜎∞} 0.0079976 0.008414 -5.2065%

Table 22.10: Long-term variance of GARCH(1,1) std. deviation with approximated for-
mula and by Monte Carlo simulations.

22.6 Third moment 𝜎𝑡

22.6.1 Short term

The expected value of 𝜎3
𝑡+ℎ can be approximated with a Taylor expansion, i.e. 𝜎3

𝑡+ℎ = (𝜎2
𝑡+ℎ)3/2.

Then, we can approximate

𝔼{𝜎3
𝑡 ∣ ℱ𝑡−1} ≈ 𝔼{𝜎2

𝑡+ℎ ∣ ℱ𝑡−1} 3
2 + 3

8
𝕍{𝜎2

𝑡+ℎ ∣ ℱ𝑡−1}
√𝔼{𝜎2

𝑡+ℎ ∣ ℱ𝑡−1}
.

Example: GARCH(1,1) std. deviation iterative third moment.

Example 22.10.

Moment step Formula Iteration Difference

𝔼{𝜎
3
2
𝑡+0 ∣ ℱ𝑡−1} 0 1.314534 1.314534 0%

𝔼{𝜎
3
2
𝑡+1 ∣ ℱ𝑡−1} 1 1.383623 1.383623 0%

𝔼{𝜎
3
2
𝑡+2 ∣ ℱ𝑡−1} 2 1.413526 1.413526 0%

𝔼{𝜎
3
2
𝑡+3 ∣ ℱ𝑡−1} 3 1.426837 1.426837 0%

𝔼{𝜎
3
2
𝑡+4 ∣ ℱ𝑡−1} 4 1.432849 1.432849 0%

𝔼{𝜎
3
2
𝑡+5 ∣ ℱ𝑡−1} 5 1.435585 1.435585 0%

𝔼{𝜎
3
2
𝑡+6 ∣ ℱ𝑡−1} 6 1.436836 1.436836 0%

𝔼{𝜎
3
2
𝑡+7 ∣ ℱ𝑡−1} 7 1.437408 1.437408 0%

𝔼{𝜎
3
2
𝑡+8 ∣ ℱ𝑡−1} 8 1.437670 1.437670 0%

𝔼{𝜎
3
2
𝑡+9 ∣ ℱ𝑡−1} 9 1.437791 1.437791 0%

𝔼{𝜎
3
2
𝑡+10 ∣ ℱ𝑡−1} 10 1.437846 1.437846 0%

Table 22.11: Forecasted third moment of GARCH(1,1) std. deviation with iteration and
with formula.
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22.6.2 Long term

With a Taylor approximation, the long term third moment of the GARCH std. deviation
reads

𝜎3
∞ ≈ (𝜎2

∞) 3
2 + 3

8
𝕍{𝜎2

∞}
√𝜎2∞

.

Example: GARCH(1,1) std. deviation long-term third moment.

Example 22.11.

Moment Formula MonteCarlo Difference

𝜎
3
2∞ 1.437893 1.436906 0.0686%

Table 22.12: Long-term third moment of GARCH(1,1) std. deviation with approximated
formula and by Monte Carlo simulations.

22.7 Covariance

The covariance between two GARCH variances at time 𝑡 and 𝑡 + ℎ reads:

ℂ𝑣{𝜎2
𝑡 ⋅ 𝜎2

𝑡+ℎ ∣ ℱ𝑡−1} = (
ℎ

∏
𝑖=1

𝜆𝑡+ℎ−𝑖) 𝕍{𝜎2
𝑡 ∣ ℱ𝑡−1}

For a fixed 𝑡 and general 𝑠 and ℎ,

ℂ𝑣{𝜎2
𝑡+𝑠 ⋅ 𝜎2

𝑡+ℎ ∣ ℱ𝑡} = ⎛⎜
⎝

max(𝑠,ℎ)
∏
𝑖=1

𝜆𝑡+max(𝑠,ℎ)−𝑖⎞⎟
⎠

𝕍{𝜎2
min(𝑠,ℎ) ∣ ℱ𝑡}

Proof: Iterative formula for the covariance between GARCH(1,1) variances

Proof. Leveraging the tower property and conditioning one can write:

𝔼{𝜎2
𝑡 ⋅ 𝜎2

𝑡+ℎ ∣ ℱ𝑡−1} = 𝔼{𝜎2
𝑡 ⋅ 𝔼{𝜎2

𝑡+ℎ ∣ ℱ𝑡} ∣ ℱ𝑡−1}

From our previous result we have:

𝔼{𝜎2
𝑡 ⋅ 𝜎2

𝑡+ℎ} = 𝔼 {𝜎2
𝑡 ⋅ (𝜔

ℎ−1
∑
𝑗=0

𝑗
∏
𝑖=1

𝜆𝑡+ℎ−𝑖 +
ℎ

∏
𝑖=1

𝜆𝑡+ℎ−𝑖 ⋅ 𝜎2
𝑡 ) ∣ ℱ𝑡−1}
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Hence,

𝔼{𝜎2
𝑡 ⋅ 𝜎2

𝑡+ℎ ∣ ℱ𝑡−1} = (𝜔
ℎ−1
∑
𝑗=0

𝑗
∏
𝑖=1

𝜆𝑡+ℎ−𝑖) 𝔼{𝜎2
𝑡 ∣ ℱ𝑡−1} + (

ℎ
∏
𝑖=1

𝜆𝑡+ℎ−𝑖) 𝔼{𝜎4
𝑡 ∣ ℱ𝑡−1}

By definition the covariance:

ℂ𝑣{𝜎2
𝑡 ⋅ 𝜎2

𝑡+ℎ ∣ ℱ𝑡−1} = 𝔼{𝜎2
𝑡 ⋅ 𝜎2

𝑡+ℎ ∣ ℱ𝑡−1} − 𝔼{𝜎2
𝑡 } ⋅ 𝔼{𝜎2

𝑡+ℎ ∣ ℱ𝑡−1} =

= (𝜔
ℎ−1
∑
𝑗=0

𝑗
∏
𝑖=1

𝜆𝑡+ℎ−𝑖) 𝔼{𝜎2
𝑡 } + (

ℎ
∏
𝑖=1

𝜆𝑡+ℎ−𝑖) 𝔼{𝜎4
𝑡 } − 𝔼{𝜎2

𝑡 } [𝜔
ℎ−1
∑
𝑗=0

𝑗
∏
𝑖=1

𝜆𝑡+ℎ−𝑖 +
ℎ

∏
𝑖=1

𝜆𝑡+ℎ−𝑖 ⋅ 𝔼{𝜎2
𝑡 }]

and simplify the first and last terms cancel and the one remain with

ℂ𝑣{𝜎2
𝑡 ⋅ 𝜎2

𝑡+ℎ ∣ ℱ𝑡−1} = (
ℎ

∏
𝑖=1

𝜆𝑡+ℎ−𝑖) 𝔼{𝜎4
𝑡 ∣ ℱ𝑡−1} − (

ℎ
∏
𝑖=1

𝜆𝑡+ℎ−𝑖) 𝔼{𝜎2
𝑡 ∣ ℱ𝑡−1}2 =

= (
ℎ

∏
𝑖=1

𝜆𝑡+ℎ−𝑖) 𝕍{𝜎2
𝑡 ∣ ℱ𝑡−1}

Example: GARCH(1,1) covariance between variances.

Example 22.12.

Moment step Formula MonteCarloDifference
ℂ𝑣{𝜎2

𝑡+0, 𝜎2
𝑡+0 ∣ ℱ𝑡−1} 0 0.02344110.0233719 0.2952%

ℂ𝑣{𝜎2
𝑡+1, 𝜎2

𝑡+1 ∣ ℱ𝑡−1} 1 0.01075300.0106399 1.0516%
ℂ𝑣{𝜎2

𝑡+2, 𝜎2
𝑡+2 ∣ ℱ𝑡−1} 2 0.00493160.0048333 1.9931%

ℂ𝑣{𝜎2
𝑡+3, 𝜎2

𝑡+3 ∣ ℱ𝑡−1} 3 0.00226080.0021966 2.8387%
ℂ𝑣{𝜎2

𝑡+4, 𝜎2
𝑡+4 ∣ ℱ𝑡−1} 4 0.00103530.0009730 6.0243%

ℂ𝑣{𝜎2
𝑡+5, 𝜎2

𝑡+5 ∣ ℱ𝑡−1} 5 0.00047300.0003460 26.8662%
ℂ𝑣{𝜎2

𝑡+6, 𝜎2
𝑡+6 ∣ ℱ𝑡−1} 6 0.00021490.0001076 49.9429%

ℂ𝑣{𝜎2
𝑡+7, 𝜎2

𝑡+7 ∣ ℱ𝑡−1} 7 0.00009620.0000169 82.3939%
ℂ𝑣{𝜎2

𝑡+8, 𝜎2
𝑡+8 ∣ ℱ𝑡−1} 8 0.00004110.0000221 46.2582%

ℂ𝑣{𝜎2
𝑡+9, 𝜎2

𝑡+9 ∣ ℱ𝑡−1} 9 0.00001460.0000417 -
186.6511%

ℂ𝑣{𝜎2
𝑡+10, 𝜎2

𝑡+10 ∣ ℱ𝑡−1} 10 0.00000000.0000382 -Inf%
Table 22.13: Forecasted covariance between GARCH(1,1) variances with formula and by

monte Carlo simulations
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For the covariance between the GARCH std. deviations, we apply a Taylor approximation
around the mean of 𝜎𝑡+𝑠 and 𝜎𝑡+ℎ, using the delta method:

ℂ𝑣{𝜎𝑡+𝑠, 𝜎𝑡+ℎ ∣ ℱ𝑡} ≈ ℂ𝑣{𝜎2
𝑡+𝑠, 𝜎2

𝑡+ℎ ∣ ℱ𝑡}
4√𝔼{𝜎2

𝑡+𝑠 ∣ ℱ𝑡}𝔼{𝜎2
𝑡+ℎ ∣ ℱ𝑡}

.

Approximated GARCH(1,1) covariance with Taylor expansion.

Proof. Considering the product of

𝜎𝑡+ℎ = √𝜎2
𝑡+ℎ ≈ √𝔼{𝜎2

𝑡+ℎ ∣ ℱ𝑡} + 1
2

(𝜎2
𝑡+ℎ − 𝔼{𝜎2

𝑡+ℎ ∣ ℱ𝑡})
√𝔼{𝜎2

𝑡+ℎ ∣ ℱ𝑡}
,

and applying the covariance between 𝜎𝑡+ℎ and 𝜎𝑡+𝑠 with 1 < 𝑠 < ℎ one obtain the
result.

Example: GARCH(1,1) covariance between std. deviations

Example 22.13.

Moment step Formula MonteCarloDifference
ℂ𝑣{𝜎𝑡+0, 𝜎𝑡+0 ∣ ℱ𝑡−1} 0 0.00406960.0039547 2.8232%
ℂ𝑣{𝜎𝑡+1, 𝜎𝑡+1 ∣ ℱ𝑡−1} 1 0.00181460.0018278 -

0.7272%
ℂ𝑣{𝜎𝑡+2, 𝜎𝑡+2 ∣ ℱ𝑡−1} 2 0.00082170.0008375 -

1.9265%
ℂ𝑣{𝜎𝑡+3, 𝜎𝑡+3 ∣ ℱ𝑡−1} 3 0.00037450.0003818 -

1.9551%
ℂ𝑣{𝜎𝑡+4, 𝜎𝑡+4 ∣ ℱ𝑡−1} 4 0.00017100.0001698 0.7476%
ℂ𝑣{𝜎𝑡+5, 𝜎𝑡+5 ∣ ℱ𝑡−1} 5 0.00007810.0000610 21.8277%
ℂ𝑣{𝜎𝑡+6, 𝜎𝑡+6 ∣ ℱ𝑡−1} 6 0.00003540.0000191 46.248%
ℂ𝑣{𝜎𝑡+7, 𝜎𝑡+7 ∣ ℱ𝑡−1} 7 0.00001590.0000023 85.7078%
ℂ𝑣{𝜎𝑡+8, 𝜎𝑡+8 ∣ ℱ𝑡−1} 8 0.00000680.0000027 60.4525%
ℂ𝑣{𝜎𝑡+9, 𝜎𝑡+9 ∣ ℱ𝑡−1} 9 0.00000240.0000058 -

142.9085%
ℂ𝑣{𝜎𝑡+10, 𝜎𝑡+10 ∣ ℱ𝑡−1} 10 0.00000000.0000057 -Inf%
Table 22.14: Forecasted covariance between GARCH(1,1) std. deviation with formula

and by monte Carlo simulations

162



Part V
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23 Hypothesis tests

A statistical hypothesis is a claim about the value of a parameter or population character-
istic. In any hypothesis-testing problem, there are always two competing hypotheses under
consideration

1. The null hypothesis ℋ0 representing the status quo.
2. The alternative hypothesis ℋ1 representing the research.

The objective of hypothesis testing is to decide, based on sample information, if the alternative
hypotheses is actually supported by the data. One usually do new research to challenge the
existing beliefs.

Is there strong evidence for the alternative?

Let’s consider that you want to establish if the null hypothesis ℋ0 is not supported by
the data. One usually assume to work under ℋ0, then if the sample does not strongly
contradict H0, we will continue to believe in the plausibility of the null hypothesis. There
are only two possible conclusions: Reject ℋ0 or Fail to reject ℋ0.

Definition 23.1. The test statistic 𝑇 (𝑋𝑛) is a function of a sample 𝑋𝑛 and is used to make
a decision about whether the null hypothesis should be rejected or not. In theory, there are
an infinite number of possible tests that could be devised. The choice of a particular test
procedure must be based on the probability the test will produce incorrect results. In general,
two kind of errors are related with test statistics, i.e.

1. A type I error is when the null hypothesis is rejected, but it is true.
2. A type II error is not rejecting the null when it is false.

The p-value is in general related to the probability of the type I error. So, the smaller the
P-value, the more evidence there is in the sample data against the null hypothesis and for the
alternative hypothesis.

In general, before performing a test one establish a significance level 𝛼 (the desired type I error
probability), that defines the rejection region. Then the decision rule is:

Reject ℋ0 ⟺ p-value ≤ 𝛼
Do not reject ℋ0 ⟺ p-value > 𝛼
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The p-value can be thought of as the smallest significance level at which ℋ0 can be rejected
and the calculation of the P-value depends on whether the test is upper, lower, or two-tailed.

For example, let’s consider a sample 𝑋𝑛 of data. Then, a statistical test consists of the
following:

1. an assumption about the distribution of the data, often expressed in terms of a statistical
model ℳ;

2. a null hypothesis 𝐻0 and an alternative hypothesis 𝐻1 which make specific statements
about the data;

3. a test statistic 𝑇 (𝑋𝑛) which is a function of the data and whose distribution under the
null hypothesis is known;

4. a significance level 𝛼 which imposes an upper bound on the probability of rejecting 𝐻0,
given that 𝐻0 is true.

The general procedure for a statistical hypothesis test can be summarized as follows:

1. Inputs: consider a null hypothesis 𝐻0 and the significance level 𝛼.
2. Critical value: compute the value 𝑡𝛼 that determine the partitions the set of possible

values of 𝑇 (𝑋𝑛) into rejection and non rejection regions.
3. Output: compare the observed test statistic 𝑇 (𝑋𝑛) computed on the sample with the

critical value 𝑡𝛼. If it is in the rejection region, 𝐻0 is rejected in favor of 𝐻1. Otherwise,
the test fails to reject 𝐻0.

Step Description
Inputs 𝐻0, 𝛼.
Critical value Critical level 𝑡(𝛼)
Output Rejection or not depending on 𝑇 (𝑋𝑛)

In general, two kind of tests are available:

• A two-tailed test is appropriate if the estimated value is greater or less than a certain
range of values, for example, whether a test taker may score above or below a specific
range of scores.

• A one-tailed test is appropriate if the estimated value may depart from the reference
value in only one direction, left or right, but not both.

165



23.1 Left and right tailed tests

For example, let’s simulate a sample 𝑋𝑛 of 𝑛 = 500 observations from a normal distribution
(i.e. 𝑋𝑛 ∼ 𝒩(2, 42)) and consider the following sets of hypothesis, i.e.

ℋ0 ∶ 𝜇(𝑋) = 2.4 ℋ1 ∶ 𝜇(𝑋) ≠ 2.4

The statistic test is defined as

𝑇 (𝑋𝑛) =
√

500 ⋅ 𝜇(𝑋𝑛) − 2.4
𝜎(𝑋𝑛)

ℋ0∼ 𝑡(499).

Since it is a two-tailed test the critical value for a significance level 𝛼, denoted as 𝑡𝛼, is such
that:

𝛼 = ℙ([𝑇 (𝑋𝑛) < −𝑡𝛼/2] ∪ [𝑇 (𝑋𝑛) > 𝑡𝛼/2])
⇕

𝑡𝛼/2 = ℙ−1(ℙ(𝑇 (𝑋𝑛) > 𝑡𝛼/2)),
where ℙ−1 and ℙ are respectively the quantile and distribution functions of a Student-𝑡. If the
statistic test |𝑇 (𝑋𝑛)| > |𝑡𝛼/2|, then we reject ℋ0 and so the mean of the sample is significantly
different from 2.4. More precisely, with 𝛼 = 0.05, the critical value of a Student-t with 499
degrees of freedom is 𝑡𝛼/2 = 1.9604.

0.0

0.1

0.2

0.3

0.4

−4 −3 −2 −1 0 1 2 3 4
x

No rejection

Rejection

Figure 23.1: Two-tailed test on the mean.
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Let’s consider another kind of hypothesis,

ℋ0 ∶ 𝜇(𝑋) ≥ 2.4 ℋ1 ∶ 𝜇(𝑋) < 2.4

The statistic test 𝑇 (𝑋𝑛) do not changes, however the null hypothesis implies a left-tailed
test. Hence, the critical value is 𝑡𝛼 is such that ℙ(𝑥 < 𝑡𝛼) = 0.05. Applying the quantile
function ℙ−1 of a student-𝑡 we obtain:

𝛼 = ℙ(𝑇 (𝑋𝑛) < 𝑡𝛼)
⇕

𝑡𝛼 = ℙ−1(ℙ(𝑇 (𝑋𝑛) < 𝑡𝛼)),

where ℙ−1 and ℙ are respectively the quantile and distribution functions of a Student-𝑡. In
this case, with 𝛼 = 0.05, the critical value of a Student-t with 499 degrees of freedom is
𝑡𝛼/2 = −1.6451. Therefore, if 𝑇 (𝑋𝑛) < −1.6451 we do not reject the null hypothesis, i.e. 𝜇(𝑋𝑛)
is greater than 𝜇0, otherwise we reject it and 𝜇(𝑋𝑛) is lower than 𝜇0.

0.0

0.1

0.2

0.3

0.4

−4 −3 −2 −1 0 1 2 3 4
x

No rejection

Rejection

Figure 23.2: Left-tailed test on the mean.

In this case we reject the null hypothesis, hence 𝜇(𝑋𝑛) is lower than 𝜇0.

Lastly, let’s consider the right-tailed case, i.e.

𝐻0 ∶ 𝜇(𝑋) ≤ 2.4 𝐻1 ∶ 𝜇(𝑋) > 2.4

167



It is always one-side test, but in this case is right-tailed. Hence, the critical value 𝑡𝛼 is such
that

1−𝛼 = ℙ(𝑇 (𝑋𝑛) < 𝑡𝛼)
⇕

𝑡𝛼 = ℙ−1(ℙ(𝑇 (𝑋𝑛) < 𝑡𝛼)),
where ℙ−1 and ℙ are respectively the quantile and distribution functions of a Student-𝑡. In
this case, with 𝛼 = 0.05, the critical value of a Student-t with 499 degrees of freedom is
𝑡𝛼/2 = 1.6451. Therefore, if 𝑇 (𝑋𝑛) < 1.6451 we do not reject the null hypothesis, i.e. 𝜇(𝑋𝑛)
is lower than 𝜇0, otherwise we reject it and 𝜇(𝑋𝑛) is greater than 𝜇0. Coherently with the
previous test performed in Figure 23.2, a right railed test is not rejected in Figure 23.3, hence
𝜇(𝑋𝑛) is lower than 𝜇0 = 2.4.

0.0

0.1

0.2

0.3

0.4

−4 −3 −2 −1 0 1 2 3 4
x

Non rejection

Rejection area

Figure 23.3: Right-tailed test on the mean.

23.2 Tests for the means

Proposition 23.1. Let’s consider the 𝑡-test for the mean of a sample of identically and
normally distributed random variables 𝑋𝑛 = (𝑥1, … , 𝑥𝑖, … , 𝑥𝑛). Then the test statistic 𝑇 (𝑋𝑛)
under ℋ0 ∶ ̂𝜇(𝑋𝑛) = 𝜇0 is student-t distributed with 𝑛 − 1 degrees of freedom., i.e.

𝑇 (𝑋𝑛) = ̂𝜇(𝑋𝑛) − 𝜇0
̂𝑠(𝑋𝑛)√𝑛

ℋ0∼ 𝑡𝑛−1,
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where ̂𝜇(𝑋𝑛) is the sample mean ̂𝜇(𝑋𝑛) and �̂�(𝑋𝑛) the corrected sample variance. Moreover,
for 𝑛 → ∞:

𝑇 (𝑋𝑛)
ℋ0⟶

𝑛→∞
𝒩(0, 1).

Proof: Proposition 23.1

Proof. In the sample is normally distributed, the sample mean is also normally dis-
tributed, i.e.

𝑀 = √𝑛 ̂𝜇(𝑋𝑛) − 𝜇0
𝜎 ∼ 𝒩(0, 1).

Under normality the sample variance, that is a sum of the square of independent and
normally distributed random variables, follows a 𝜒2 distribution with 𝑛 − 1 degrees of
freedom, i.e.

𝑉 = (𝑛 − 1) ̂𝑠2(𝑋𝑛)
𝜎2 ∼ 𝜒2

𝑛−1.

Notably, the ratio of a standard normal and a 𝜒2 random variables (each one divided by
the respective degrees of freedom) is exactly the definition of a Student-t random variable
as in Equation 33.2. Hence, the ratio between the statistics 𝑀 and 𝑉 divided by their
degrees of freedom reads

𝑀
√ 𝑉

𝑛−1

= √𝑛 ̂𝜇(𝑋𝑛) − 𝜇0
𝜎 √ 𝜎2

̂𝑠2(𝑋𝑛) = √𝑛 ̂𝜇(𝑋𝑛) − 𝜇0
̂𝑠2(𝑋𝑛) ∼ 𝑡𝑛−1.

The statistic test under 𝐻0 follows a Student-t distribution with 𝑛 − 1 degrees of free-
dom. Notably, for large IID samples the statistic converges to a normal random variable
independently from the distribution of 𝑋.

23.2.1 Test for two means and equal variances

Let’s consider two independent Gaussian populations with equal variance, i.e.

𝑋1 ∼ 𝒩(𝜇1, 𝜎2), 𝑋2 ∼ 𝒩(𝜇2, 𝜎2)

Then, let’s consider two samples of unequal size, 𝑛1 and 𝑛2, with unknown means 𝜇1 and 𝜇2
and an equal unknown variance 𝜎2. Then, given the null hypothesis

𝐻0 = 𝜇1 − 𝜇2 = 𝜇Δ,

the test statistic
𝑇 (𝑋𝑛1

, 𝑋𝑛2
) = 𝜇(𝑋𝑛1

) − 𝜇(𝑋𝑛2
) − 𝜇Δ

𝑠𝑝 ⋅ √ 1
𝑛1

+ 1
𝑛2

∼ 𝑡𝑛1+𝑛2−2,
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is Student-t distributed with 𝑛1 + 𝑛2 − 2 degrees of freedom and

𝑠𝑝 = √(𝑛1 − 1) ̂𝑠2(𝑋𝑛1
) + (𝑛2 − 1) ̂𝑠2(𝑋𝑛2

)
𝑛1 + 𝑛2 − 2 ,

where ̂𝑠2(𝑋𝑛1
) and ̂𝑠2(𝑋𝑛2

) are the sample corrected variances (Equation 9.11) of the two
samples.

23.2.2 Test for two means and unequal variances

Let’s consider two independent Gaussian populations with different variance, i.e.

𝑋1 ∼ 𝒩(𝜇1, 𝜎2
1), 𝑋2 ∼ 𝒩(𝜇2, 𝜎2

2).

Then, let’s consider two samples of unequal size, 𝑛1 and 𝑛2, with unknown means 𝜇1 and 𝜇2
and an unequal unknown variance 𝜎2. Then, given the null hypothesis

𝐻0 = 𝜇1 − 𝜇2 = 𝜇Δ,

Welch (1938) - Welch (1947) proposes a test statistic

𝑇 (𝑋𝑛1
, 𝑋𝑛2

) = 𝜇(𝑋𝑛1
) − 𝜇(𝑋𝑛2

)
√ ̂𝑠2(𝑋𝑛1 )

𝑛1
+ ̂𝑠2(𝑋𝑛2 )

𝑛2

≈ 𝑡𝜈,

that follows approximately a Student t-distribution under the null hypothesis, but with frac-
tional degrees of freedom computed using the Welch–Satterthwaite approximation. This is a
weighted average of the degrees of freedom from each group, reflecting the uncertainty due to
unequal variances, i.e.

𝜈 =
( ̂𝑠2(𝑋𝑛1 )

𝑛1
+ ̂𝑠2(𝑋𝑛1 )

𝑛2
)

2

( ̂𝑠2(𝑋𝑛1 ))2

𝑛2
1(𝑛1−1) + ( ̂𝑠2(𝑋𝑛1 ))2

𝑛2
2(𝑛2−1)

.

where 𝜈 is not necessary an integer.

23.3 Tests for the variances

23.3.1 F-test for two variances

Consider two independent normal samples, i.e.

𝑋𝑛1
∼ 𝒩(𝜇1, 𝜎2

1), 𝑋𝑛2
∼ 𝒩(𝜇2, 𝜎2

2),
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where 𝑛1 and 𝑛2 are the number of observations in each sample.

𝐻0 ∶ 𝜎2
1 = 𝜎2

2 = 𝜎2.

Knowing that the sample variance is chi2 distributed (Equation 9.15) let’s define the vari-
ables:

𝑇1 = (𝑛1 − 1) ̂𝑠2
1

𝜎2
1

∼ 𝜒2
𝑛1−1, 𝑇2 = (𝑛2 − 1) ̂𝑠2

2
𝜎2

2
∼ 𝜒2

𝑛2−1.

Then, since the ration of two independent 𝜒2 divided by their respective degrees of freedom is
𝐹 -distributed (Equation 33.3) the statistic 𝐹 is defined as:

𝑇 (𝑋𝑛1
, 𝑋𝑛2

) =
𝑇1

𝑛1−1
𝑇2

𝑛1−1
=

̂𝑠2
1

𝜎2
1
̂𝑠2
2

𝜎2
2

= ̂𝑠2
1𝜎2

2
̂𝑠2
2𝜎2

1
∼ F𝑛1−1,𝑛2,−1

Under 𝐻0 the two variances are assumed to be equal, i.e. 𝜎2
1 = 𝜎2

2 = 𝜎2, thus the statistic
simplifies in:

𝑇 (𝑋𝑛1
, 𝑋𝑛2

) 𝐻0= ̂𝑠2
1
̂𝑠2
2

∼ F𝑛1−1,𝑛2,−1

This means that the null hypothesis of equal variances can be rejected when F is as extreme or
more extreme than the critical value obtained from the F-distribution with degrees of freedom
𝑛1 − 1 and 𝑛2 − 1 using a significance level 𝛼.
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24 Autocorrelation tests

24.1 Durbin-Watson test

The aim of the Durbin-Watson test is to verify if a time series presents autocorrelation or
not. Specifically, let’s consider a time series 𝑋𝑡 = (𝑥1, … , 𝑥𝑖, … , 𝑥𝑡), then evaluating an AR(1)
model, i.e.

𝑥𝑡 = 𝜙1𝑥𝑡−1 + 𝑢𝑡 (24.1)
we would like to verify if 𝜙1 is significantly different from zero. The test statistic, denoted as
DW, is computed as:

DW = ∑𝑡
𝑖=2(𝑥𝑖 − 𝑥𝑖−1)2

∑𝑡
𝑖=2 𝑥2

𝑖−1
≈ 2(1 − 𝜙1)

The null hypothesis 𝐻0 is the absence of autocorrelation, i.e.

𝐻0 ∶ 𝜙1 = 0 𝐻1 ∶ 𝜙1 ≠ 0

Under 𝐻0 the Durbin-Watson statistic is approximated as 𝐷𝑊 ≈ 2(1 − 0) = 2. The test
always generates a statistic between 0 and 4. However, there is not a known distribution for
critical values. Hence to establish if we can reject or not 𝐻0 when we have values very different
from 2, we should look at the tables.

24.2 Breush-Godfrey

The Breush-Godfrey test is similar to Durbin-Watson, but it allows for multiple lags in the
regression. In order to perform the test let’s fit an AR(p) model on the a time series 𝑋𝑡 =
(𝑥1, … , 𝑥𝑖, … , 𝑥𝑡), i.e.

𝑥𝑡 = 𝜙1𝑥𝑡−1 + ⋯ + 𝜙𝑝𝑥𝑡−𝑝 + 𝑢𝑡 (24.2)
The null hypothesis 𝐻0 is the absence of autocorrelation, i.e.

𝐻0 ∶ 𝜙1 = ⋯ = 𝜙𝑝 = 0
𝐻1 ∶ 𝜙1 ≠ 0, … , 𝜙𝑝 ≠ 0

The null hypothesis 𝐻0 is tested looking at the F statistic that is distributed as a Fisher–
Snedecor distribution, i.e F ∼ 𝐹𝑝,𝑛−𝑝−1. Alternatively is is possible to use the LM statistic,
i.e. LM = 𝑛𝑅2 ∼ 𝜒(𝑝) where 𝑅2 is the R squared of the regression in Equation 24.2.
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24.3 Box–Pierce test

Let’s consider a sequence of 𝑛 IID observations, i.e. 𝑢𝑡 ∼ IID(0, 𝜎2). Then, the autocorrelation
for the 𝑘-lag can be estimated as:

̂𝜌𝑘 = ℂ𝑟{𝑢𝑡, 𝑢𝑡−𝑘} = ∑𝑛
𝑡=𝑘 𝑢𝑡𝑢𝑡−𝑘
∑𝑛

𝑡=𝑘 𝑢2
𝑡

.

Moreover, since ̂𝜌𝑘 ∼ 𝑁 (0, 1
𝑛), standardizing ̂𝜌𝑘 one obtain

√𝑛 ̂𝜌𝑘 ∼ 𝑁(0, 1) ⟹ 𝑛 ̂𝜌2
𝑘 ∼ 𝜒2

1.

It is possible to generalize the result considering 𝑚-auto correlations. In specific, let’s define
a vector containing the first 𝑚 standardized auto-correlations. Due to the previous result it
converges in distribution to a multivariate standard normal, i.e.

√𝑛
⎡
⎢
⎢
⎢
⎣

̂𝜌1
⋮
̂𝜌𝑘
⋮
̂𝜌𝑚

⎤
⎥
⎥
⎥
⎦

𝑑⟶
𝑛→∞

𝒩(0𝑚×0, 𝕀𝑚×𝑚).

Remembering that the sum of the squares of 𝑚-normal random variable is distributed as a
𝜒2(𝑚), one obtain the Box–Pierce test as

𝐵𝑃𝑚 = 𝑛
𝑚

∑
𝑘=1

̂𝜌2
𝑘

𝑑⟶
𝐻0

𝜒2
𝑚,

where the null hypothesis and the alternative are

𝐻0 ∶ 𝜌1 = ⋯ = 𝜌𝑚 = 0
𝐻1 ∶ 𝜌1 ≠ 0, … , 𝜌𝑝 ≠ 0

Note that such test, also known as Portmanteau test, provide an asymptotic result valid only
for large samples.

IID assumption

Note that the assumption of the test is that the observations are IID. Therefore, the test
do no apply in the case of heteroskedasticity.
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24.3.1 Ljung-Box test

Since the Box–Pierce test provide a consistent framework only for large samples, when dealing
with a small samples it is preferable to use an alternative version, known as Ljung-box test,
defined with a correction factor, i.e.

LB𝑚 = 𝑛(𝑛 + 2)
𝑚

∑
𝑘=1

̂𝜌2
𝑘

𝑛 − 𝑘
𝑑⟶

𝐻0
𝜒2(𝑚)

Independently from the statistic test used, i.e. 𝑄𝑚 = 𝐵𝑃𝑚 or 𝑄𝑚 = 𝐿𝐵𝑚, in general both are
rejected when

{Q𝑚 > 𝜒2
1−𝛼,𝑚 H0 rejected

Q𝑚 < 𝜒2
1−𝛼,𝑚 H0 not rejected

where 𝜒2
1−𝛼,𝑚 is the quantile with probability 1 − 𝛼 of the 𝜒2

𝑚 distribution with 𝑚 degrees
of freedom. If we reject 𝐻0, the time series presents autocorrelation, otherwise if 𝐻0 is non
rejected we have no autocorrelation.
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25 Normality tests

Tests of normality are statistical inference procedures designed to test that the underlying
distribution of a random variable is normally distributed. There is a long history of these tests,
and there are a plethora of them available for use, i.e. Jarque and Bera (1980), D’Agostino
and Pearson (1973), Ralph B. D’agostino and Jr. (1990). Such kind of tests are based on the
comparison of the sample skewness and kurtosis with the skewness and kurtosis of a normal
distribution, hence their estimation is crucial.

25.1 Jarque-Brera test

If 𝑋 is an independent and identically distributed process, the asymptotic distribution of the
skewness and kurtosis in Equation 9.19 holds for 𝑋 ∼ 𝒩. Hence, we construct an omnibus
test for normality. Standardizing the skewness and kurtosis, under

𝐻0 ∶ 𝛽1(𝑋𝑛) = 0, 𝛽2(𝑋𝑛) = 3,

we have

𝑍1(𝑋𝑛) = √𝑛𝑏1(𝑋𝑛)√
6

𝑑⟶
𝑛→∞

𝒩 (0, 1) ,

𝑍2(𝑋𝑛) = √𝑛𝑏2(𝑋𝑛) − 3√
24

𝑑⟶
𝑛→∞

𝒩 (0, 1) ,

where 𝑏1(𝑋𝑛) and 𝑏2(𝑋𝑛) are defined respectively in Equation 9.17 and in Equation 9.20. It is
possible to prove that 𝑍1(𝑋𝑛) and 𝑍2(𝑋𝑛) are independent. Since the sum of two independent
standard normal squared random variables follows a 𝜒2

𝑣 distribution with 𝑣 = 2 degrees of
freedom, let’s rewrite the Jarque-Brera statistic as:

JB(𝑋𝑛) = 𝑍1(𝑋𝑛)2 + 𝑍2(𝑋𝑛)2 𝑑⟶
𝑛→∞

𝜒2
2.

However, if 𝑛 is small the JB(𝑋𝑛) over-reject the null hypothesis 𝐻0, i.e. type I error.
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Figure 25.1: Jarque-Brera test for normality with a simulated Normal sample of 50 observa-
tions with 𝛼 = 0.05.

25.2 Urzua-Jarque-Brera test

Let’s substitute the asymptotic moments with the exact sample moments of skewness and
kurtosis. Following Urzúa (1996), let’s write the new omnibus test statistic as:

̃𝑍1(𝑋𝑛) = 𝑏1(𝑋𝑛)
√𝕍{𝑏1(𝑋𝑛)}

𝑑⟶
𝑛→∞

𝒩 (0, 1) ,

̃𝑍2(𝑋𝑛) = 𝑏2(𝑋𝑛) − 𝔼{𝑏2(𝑋𝑛)}
√𝕍{𝑏2(𝑋𝑛)}

𝑑⟶
𝑛→∞

𝒩 (0, 1) ,

where the exact moments 𝕍{𝑏1(𝑋𝑛)}, 𝔼{𝑏2(𝑋𝑛)} and 𝕍{𝑏2(𝑋𝑛)} are defined respectively in
Equation 9.18, Equation 9.21, Equation 9.22. Hence, the Urzua-Jarque-Brera test adjusted
for small samples is computed as:

UJB(𝑋𝑛) = ̃𝑍1(𝑋𝑛)2 + ̃𝑍2(𝑋𝑛)2 𝑑⟶
𝑛→∞

𝜒2
2.
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Figure 25.2: Urzua-Jarque-Brera test for normality with a simulated Normal sample of 50
observations with 𝛼 = 0.05.

25.3 D’Agostino skewness test

D’Agostino and Pearson (1973) proposed an alternative way to test that the skewness is
different from zero. Starting from the statistic ̃𝑍1(𝑋𝑛), compute:

𝛽2(𝑏1) = 3(𝑛2 + 27𝑛 − 70)(𝑛 + 1)(𝑛 + 3)
(𝑛 − 2)(𝑛 + 5)(𝑛 + 7)(𝑛 + 9) ,

and
𝑊 2 = √2𝛽2(𝑏1) − 1 − 1,

𝛿 = 1
√ln(𝑊)

,

𝛼 = √ 2
𝑊 2 − 1 .

The statistic test for skewness is defined as:

𝑍∗
1(𝑋𝑛) = 𝛿 log

⎧{
⎨{⎩

̃𝑍1(𝑋𝑛)
𝛼 +

√√√
⎷

(
̃𝑍1(𝑋𝑛)

𝛼 )
2

+ 1
⎫}
⎬}⎭

=

= 𝛿 sinh−1 (
̃𝑍1(𝑋𝑛)

𝛼 ) ,
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where 𝑍∗
1(𝑋𝑛) ∼ 𝒩(0, 1).

0.0

0.1

0.2

0.3

0.4

0−1.482  1.960−1.960
Skewness statistic

Non Rejection Area Rejection Area

Figure 25.3: Skewness test with a simulated Normal sample of 50 observations with 𝛼 = 0.05.

25.4 Anscombe Kurtosis test

Anscombe and Glynn (1983) proposed a test for skewness. Starting from the statistic ̃𝑍2(𝑋𝑛),
let’s compute the third standardized moment of 𝑏2:

𝛽1(𝑏2) = 6(𝑛2 − 5𝑛 + 2)
(𝑛 + 7)(𝑛 + 9) √ 6(𝑛 + 3)(𝑛 + 5)

𝑛(𝑛 − 2)(𝑛 − 3) ,

and

𝐴 = 6 + 8
𝛽1(𝑏2) [ 2

𝛽1(𝑏2) + √1 + 4
𝛽1(𝑏2)] .

The statistic test for kurtosis is defined as:

𝑍∗
2(𝑋𝑛) = √9𝐴

2
⎛⎜
⎝

1 − 2
9𝐴 − [ 1 − 2/𝐴

1 + ̃𝑍2(𝑋𝑛)√2/(𝐴 − 4)
]

1/3
⎞⎟
⎠

,

where 𝑍∗
2(𝑋𝑛) ∼ 𝒩(0, 1).
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Figure 25.4: Kurtosis test with a simulated Normal sample of 50 observations with 𝛼 = 0.05.

25.5 D’Agostino-Pearson 𝐾2 test

Finally in Ralph B. D’agostino and Jr. (1990), there is also another omnibus test based on
the statistics 𝑍∗

1(𝑋𝑛), 𝑍∗
2(𝑋𝑛), i.e.

𝐾2 = (𝑍∗
1(𝑋𝑛))2 + (𝑍∗

2(𝑋𝑛))2 ∼ 𝜒2(2).

25.6 Kolmogorov-Smirnov Test

The Kolmogorov–Smirnov test can be used to verify whether a samples is drawn from a ref-
erence distribution. In the case of q sample with dimension 𝑛, the KS statistic is defined
as:

𝐾𝑆𝑛 = sup
∀𝑥

|𝐹𝑛(𝑥) − 𝐹(𝑥)|. (25.1)

In this settings, the test statistic follows the Kolmogorov distribution, i.e.

𝐹𝐾𝑆(√𝑛 ⋅ 𝐾𝑆𝑛 < 𝑥) = 1 − 2
∞

∑
𝑘=1

(−1)𝑘−1𝑒−2𝑘2𝑥2 .
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Figure 25.5: Agostino normality test with a simulated Normal sample of 50 observations with
𝛼 = 0.05.

The null distribution of this statistic is calculated under the null hypothesis that the sample
is drawn from the reference distribution 𝐹 , i.e.

𝐻0 ∶ 𝐹𝑛(𝑋) = 𝐹(𝑋) 𝐻1 ∶ 𝐹𝑛(𝑋) ≠ 𝐹(𝑋)

For large samples, 𝐻0 is rejected at a given confidence level 𝛼 if:
√𝑛 ⋅ 𝐾𝑆𝑛 > 𝐹 −1

𝐾𝑆(𝐹𝐾𝑆(√𝑛 ⋅ 𝐾𝑆𝑛 < 𝐾𝛼)),

where 𝐾𝛼 represents the critical value and 𝐹 −1
𝐾𝑆 the quantile function of the Kolmogorov

distribution.

25.6.1 Example 1: KS test for normality

Let’s simulate 500 observations of a stationary normal random variable, i.e. 𝑋𝑛 ∼ 𝒩(0.2, 1).

Table 25.1: KS-test for normality on a Normal’s random sample with 𝛼 = 0.05.

𝑛 𝛼 𝐾𝑆𝑛 Critical Level 𝐻0

5000 5% 0.8651 1.358 Non-Rejected
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1. Simulated stationary sample
2. Set the interval values for upper and lower band. This is done to avoid including outliers,

however it is possible to use also the minimum and maximum.
3. Empirical cdf
4. Compute the KS-statistic as in Equation 25.1.
5. Compute the rejection level

25.6.2 Example 2: KS test for normality

Let’s simulate 500 observations of a stationary t-student random variable with increasing
degrees of freedom 𝜈, i.e. 𝑋𝑛 ∼ 𝑡(𝜈). Then, we compare the obtained result with a standard
normal random variable, i.e. 𝒩(0, 1). It is known that increasing the degrees of freedom of a
student-t imply the convergence to a standard normal. Hence, we expect that from a certain
𝜈 awards the null hypothesis will be no more rejected.

Table 25.2: KS-test for normality on t-student’s random samples with 𝛼 = 0.05.

𝜈 𝑛 𝛼 𝐾𝑆𝑛 Critical Level 𝐻0

1 5000 5% 9.356 1.358 Rejected
5 5000 5% 2.974 1.358 Rejected
10 5000 5% 1.751 1.358 Rejected
15 5000 5% 1.462 1.358 Rejected
20 5000 5% 1.285 1.358 Non-Rejected
30 5000 5% 1.190 1.358 Non-Rejected
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26 Stationarity tests

26.1 Dickey–Fuller test

The Dickey–Fuller test tests the null hypothesis that a unit root is present in an auto regressive
(AR) model. The alternative hypothesis is different depending on which version of the test is
used, usually is “stationary” or “trend-stationary”. Let’s consider an AR(1) model, i.e.

𝑥𝑡 = 𝜇 + 𝛿𝑡 + 𝜙1𝑥𝑡−1 + 𝑢𝑡, (26.1)

or equivalently adding and subtracting 𝑥𝑡−1

Δ𝑥𝑡 = 𝜇 + 𝛿𝑡 + (1 − 𝜙1)𝑥𝑡−1 + 𝑢𝑡. (26.2)

The hypothesis of the Dickey–Fuller test are:

H0 ∶ 𝜙1 = 1 (non stationarity)
H1 ∶ 𝜙1 < 1 (stationarity)

The Dickey–Fuller statistic (DF) is computed as:

DF = 1 − 𝜙1
𝕊𝑑{1 − 𝜙1}

However, since the test is done over the residual term rather than raw data, it is not possible
to use the t-distribution to provide critical values. Therefore, the statistic 𝐷𝐹 has a specific
distribution.

26.2 Augmented Dickey–Fuller test

The augmented Dickey–Fuller is a more general version of the Dickey–Fuller test for a general
AR(p) model, i.e.

Δ𝑥𝑡 = 𝜇 + 𝛿𝑡 + 𝛾𝑥𝑡−1 +
𝑝

∑
𝑖=1

𝜙𝑖Δ𝑥𝑡−𝑖

The hypothesis of the augmented Dickey–Fuller test are:

H0 ∶ 𝛾 = 0 (non stationarity)
H1 ∶ 𝛾 < 0 (stationarity)
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The augmented Dickey–Fuller statistic (ADF) is computed as:

ADF = 𝛾
𝕊𝑑{𝛾}

As in the simpler case, the critical values are computed using a specific table for the Dickey–
Fuller test.

26.3 Kolmogorov-Smirnov test

The Kolmogorov–Smirnov two-sample test (KS) can be used to test whether two samples
came from the same distribution. Let’s define the empirical distribution function 𝐹𝑛 of 𝑛-
independent and identically distributed ordered observations 𝑋(𝑖) as

𝐹𝑛(𝑥) = 1
𝑛

𝑛
∑
𝑖=1

𝟙(−∞,𝑥](𝑋(𝑖)).

The KS statistic quantifies a distance between the empirical distribution function of the sample
and the cumulative distribution functions of two random samples. The distribution of the
KS statistic under the null hypothesis assumes that the samples are drawn from the same
distribution, i.e.

H0 ∶ 𝑋 is stationary
H1 ∶ 𝑋 is not stationary

The statistic test for two samples with dimension 𝑛1 and 𝑛2 is defined as:

KS𝑛1,𝑛2
= sup

∀𝑥
|𝐹𝑛1

(𝑥) − 𝐹𝑛2
(𝑥)|,

and for large samples 𝐻0 is rejected with confidence level 1 − 𝛼 if:

KS𝑛1,𝑛2
> √− 1

2𝑛2
ln (𝛼

2 ) (1 + 𝑛2
𝑛1

).

Hence, since the statistic is always greater of equal to zero, with a given statistic KS𝑛1,𝑛2
the

p-value with confidence level 𝛼 = 2ℙ(𝑋 > KS𝑛1,𝑛2
) reads:

ℙ(𝑋 > KS𝑛1,𝑛2
) = exp (− 2𝑛2

1 + 𝑛1
𝑛2

KS2
𝑛1,𝑛2

)
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KS test for time series

To apply the test in a time series settings, use a random index to split the original series
in two sub-series. Then the KS can be applied as usual.

26.3.1 Examples

Check for stationarity

Example 26.1. Let’s consider 500 simulated observations of the random variable 𝑋
drown from a population distributed as 𝑋 ∼ 𝑁(0.4, 1). Then, considering it as a time
series, let’s sample a random index to split the series in a point. Finally, as shown in
Table 26.1 the null hypothesis, i.e. the two samples come from the same distribution, is
not reject with the confidence level 𝛼 = 5%.
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100%

−1 0 1 2
x

cd
f

Figure 26.1: Two samples cdfs and KS-statistic (magenta) for a stationary time series.
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Table 26.1: KS test for a stationary time series.

Index split 𝛼 𝑛1 𝑛2 𝐾𝑆𝑛1,𝑛2
p.value Critical level 𝐻0

348 0.05 348 152 0.07093 0.6282 0.132 Non-
Rejected

Check for non-stationarity

Example 26.2. Let’s consider 250 simulated observations of the random variable 𝑋
drown from a population distributed as 𝑌1,𝑡 ∼ 𝑁(0, 1) and the following 250 from 𝑌2,𝑡 ∼
𝑁(0.3, 1). Then the non-stationary series will have a structural break at the point 250
and the time series is given by:

𝑋𝑡 = {𝑌1,𝑡 𝑡 ≤ 250
𝑌2,𝑡 𝑡 > 250

As in Example 26.2 let’s split the time series and apply the KS-test. In this case, as shown
in Table 26.2 the null hypothesis, i.e. the two samples come from the same distribution,
is reject with confidence level 𝛼 = 5%.
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Figure 26.2: Two samples cdfs and KS-statistic (magenta) for a non-stationary time se-
ries.
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Table 26.2: KS test for a non-stationary time series.

Index split 𝛼 𝑛1 𝑛2 𝐾𝑆𝑛1,𝑛2
p.value Critical level 𝐻0

166 0.05 166 334 0.1643 0.0000058310.129 Rejected
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27 Value at Risk test

Let’s consider a ARMA(2,2)-GARCH(1,1) model defined as:

𝑥𝑡 = 𝜇 + 𝜙1𝑥𝑡−1 + 𝜙2𝑥𝑡−2 + 𝜃1𝑒𝑡−1 + 𝜃2𝑒𝑡−2 + 𝑒𝑡
𝑒𝑡 = 𝜎𝑡𝑢𝑡
𝜎2

𝑡 = 𝜔 + 𝛼1𝑒2
𝑡−1 + 𝛽1𝜎2

𝑡−1

The Value at Risk (VaR) with confidence level 𝛼 depends on the distribution of 𝑥𝑡 that is
implicitly defined from the distribution of 𝑢𝑡. Therefore, the VaR at time 𝑡, conditional to the
information up to time 𝑡 − 1, is implicitly defined as:

ℙ(𝑋𝑡 ≤ VaR𝛼
𝑡∣𝑡−1) = 𝛼.

27.1 Normal distribution

Let’s consider independent and normally distributed residuals 𝑢𝑡. Then, also the conditional
distribution of 𝑥𝑡 given the information up to time 𝑡 − 1 will be normal with conditional mean
and variance given by:

{𝔼{𝑋𝑡 ∣ 𝐼𝑡−1} = 𝜇 + 𝜙1𝑥𝑡−1 + 𝜙2𝑥𝑡−2 + 𝜃1𝑒𝑡−1 + 𝜃2𝑒𝑡−2
𝕍{𝑋𝑡 ∣ 𝐼𝑡−1} = 𝜔 + 𝛼1𝑒2

𝑡−1 + 𝛽1𝜎2
𝑡−1 = 𝜎2

𝑡

Hence, given the quantile 𝑞𝛼 of a standard normal with level 𝛼, the VaR is computed as:

VaR𝛼
𝑡∣𝑡−1 = 𝔼{𝑋𝑡 ∣ 𝐼𝑡−1} + 𝑞𝛼√𝕍{𝑋𝑡 ∣ 𝐼𝑡−1}.

27.2 Gaussian Mixture distribution

Let’s consider independent and Gaussian mixture distributed residuals 𝑢𝑡 with 2 components.
Then, also the conditional distribution of 𝑥𝑡 given the information up to time 𝑡 − 1 will be a
Gaussian mixture with conditional mean and variance given by:

⎧{{
⎨{{⎩

𝔼{𝑋𝑡 ∣ 𝐼𝑡−1, 𝐵 = 1} = 𝜇 + 𝜙1𝑥𝑡−1 + 𝜙2𝑥𝑡−2 + 𝜃1𝑒𝑡−1 + 𝜃2𝑒𝑡−2 + 𝜇1𝜎𝑡
𝔼{𝑋𝑡 ∣ 𝐼𝑡−1, 𝐵 = 0} = 𝜇 + 𝜙1𝑥𝑡−1 + 𝜙2𝑥𝑡−2 + 𝜃1𝑒𝑡−1 + 𝜃2𝑒𝑡−2 + 𝜇0𝜎𝑡
𝕍{𝑋𝑡 ∣ 𝐼𝑡−1, 𝐵 = 1} = (𝜎𝑡𝜎1)2

𝕍{𝑋𝑡 ∣ 𝐼𝑡−1, 𝐵 = 0} = (𝜎𝑡𝜎0)2
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Hence, given the quantile 𝑞𝛼 of a Gaussian mixture with 2 components with level 𝛼, that in
general needs to be computed numerically, the VaR is defined as:

VaR𝛼
𝑡∣𝑡−1 = 𝑞𝛼.

27.3 Test on the number of violations

Let’s define a violation of the VaR𝛼
𝑡|𝑡−1 as

𝑣𝑡 = 𝟙[𝑥𝑡≤VaR𝛼
𝑡∣𝑡−1] ∼ Bernoulli(𝛼),

and let’s define the number of violations of the conditional VaR as follows, i.e.

𝑁𝑡 =
𝑡

∑
𝑖=1

𝑣𝑖.

27.3.1 Asymptotic variance

Applying the central limit theorem (CLT) it is possible to prove that the statistic test converges
in distribution to a standard normal, i.e.

T𝛼
1 = 1√

𝑡
𝑡

∑
𝑖=1

( 𝑣𝑖 − 𝛼
√𝛼(1 − 𝛼)

) 𝑑⟶
𝑛→∞

𝒩(0, 1).

Hence, given the null hypothesis 𝐻0 ∶ ℙ{𝑋𝑡 ≤ VaR𝛼
𝑡|𝑡−1|𝐼𝑡−1) = 𝛼, that is equivalent to

𝔼{𝑒𝑡} = 𝛼 we define the critical values at a confidence level 𝛼∗ as

𝛼 = ℙ{|T𝛼
1 | > 𝑡𝛼∗/2}

⇕
𝑡𝛼∗/2 = ℙ−1{ℙ{|T𝛼

1 | > 𝑡𝛼∗/2}}

where ℙ and ℙ−1 are respectively the distribution and the quantile of a standard normal.
Therefore, the null hypothesis is rejected at a confidence level 𝛼∗ if:

{[T𝛼
1 < −𝑡𝛼∗/2] ∪ [T𝛼

1 > 𝑡𝛼∗/2] ⟹ 𝐻0 rejected
[−𝑡𝛼∗/2 < T𝛼

1 < 𝑡𝛼∗/2] ⟹ 𝐻0 not rejected
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27.3.2 Empirical variance

Instead of using the theoretical variance of 𝑒𝑡, namely 𝛼(1 − 𝛼), let’s substitute it with the
empirical one, i.e.

𝛼(1 − 𝛼) ⟶ 𝑁𝑡
𝑡 (1 − 𝑁𝑡

𝑡 ) .

Hence, the new statistic test 𝑁𝑉2 converges to 𝑁𝑉1 in probability, therefore also in distribution,
i.e.

T𝛼
2 = 1√

𝑡
𝑡

∑
𝑖=1

⎛⎜⎜
⎝

𝑣𝑖 − 𝛼
√𝑁𝑡

𝑡 (1 − 𝑁𝑡
𝑡 )

⎞⎟⎟
⎠

𝑝
⟶

𝑛→∞
T𝛼

1
𝑑⟶

𝑛→∞
𝒩(0, 1).

For small samples, the following relation between the two statistics should be used:

T𝛼
2 = √𝛼(1 − 𝛼)

√𝑁𝑡
𝑡 (1 − 𝑁𝑡

𝑡 )
T𝛼

1 .

27.4 Example: 𝐻0 is not rejected

Instead of simulating exactly 𝑢𝑡 ∼ 𝒩(0, 1), let’s simulate residuals that are close to the normal
distribution, i.e. 𝑢𝑡 ∼ 𝑡(25).
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0 1000 2000 3000 4000 5000

X
t

µ :   0.5    φ1:  0.34    φ2:  0.14    ω :   0.4    α1:  0.25    β1:  0.25    β2:  0.15

Figure 27.1: AR(2)-GARCH(1,2) simulation with theoric (red) VaR at 𝛼 = 0.05.
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Table 27.1: Test for a Student-𝑡 with 25 degrees of freedom at 𝛼∗ = 0.05 on the number of
violations of the theoric VaR at 𝛼 = 0.05.

𝑛 𝛼 𝑁𝑛
𝑛 𝑡𝛼/2 T𝛼

1 T𝛼
2 𝑡𝛼/2 𝐻0(T1) 𝐻0(T2)

5000 5% 5.6% -1.96 1.947 1.845 1.96 Non-
Rejected

Non-
Rejected

27.5 Example: 𝐻0 is rejected

Instead of simulating exactly 𝑢𝑡 ∼ 𝒩(0, 1), let’s simulate residuals that are not close to the
normal distribution, i.e. 𝑢𝑡 ∼ 𝑡(5).
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0

10

0 250 500 750 1000

X
t

µ :   0.5    φ1:  0.34    φ2:  0.14    ω :   0.4    α1:  0.25    β1:  0.25    β2:  0.15

Figure 27.2: AR(2)-GARCH(1,2) simulation with theoric (red) and empirical (blue) VaR at
𝛼 = 0.05.

Computing the test on the normal quantile gives a rejection of the null hypothesis 𝐻0, i.e. the
deviation from the VaR is not stochastic and it is not an adequate measure of risk.
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Table 27.2: Test for a Student-𝑡 with 5 degrees of freedom at 𝛼∗ = 0.05 on the number of
violations of the theoric VaR at 𝛼 = 0.05.

𝑛 𝛼 𝑁𝑛
𝑛 −𝑡𝛼/2 T𝛼

1 T𝛼
2 𝑡𝛼/2 𝐻0(T1) 𝐻0(T2)

1000 5% 8.5% -1.96 5.078 3.969 1.96 Rejected Rejected

Setting 𝛼 = 0.05 we obtain an empiric ̂𝑞𝛼 equal to -2.07 different from the theoric one of
-1.6449.
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28 Tukey functions

28.1 Tukey’s Bisquare

𝜌𝑑(𝑥) =
⎧{
⎨{⎩

𝑑2
6 {1 − [1 − 𝑥2

𝑑2 ]
3
} |𝑥| ≤ 𝑑

𝑑2
6 |𝑥| > 𝑑

28.2 R

tukey_bisquare <- function(d){
function(x){

x[abs(x) > d] <- NA
f_x <- (d^2)/6*(1 - (1 - (x/d)^2)^3)
f_x[is.na(f_x)] <- (d^2)/6
return(f_x)

}
}
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0

1

2

3

−6.00 −4.57 −3.57 −2.57 −1.57 0.00 4.573.572.571.57 6.00
x

ρ(
x;

d)
d = 4.57 d = 3.57 d = 2.57 d = 1.57

28.2.1 First derivative

𝜌′(𝑥; 𝑑) = {𝑥 [1 − 𝑥2
𝑑2 ]

2
|𝑥| ≤ 𝑑

0 |𝑥| > 𝑑

28.3 R

# Tukey's Bisquare First Derivative
tukey_bisquare_prime <- function(d){

function(x){
x[abs(x) > d] <- NA
f_x <- x*(1 - (x/d)^2)^2
f_x[is.na(f_x)] <- 0
return(f_x)

}
}
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−1.0

−0.5

0.0

0.5

1.0

−6.00 −4.57 −3.57 −2.57 −1.57 0.00 4.573.572.571.57 6.00
x

ρ′ (x
;d

)
d = 4.57 d = 3.57 d = 2.57 d = 1.57

28.3.1 Second derivative

𝜌′′
𝑑 (𝑥) = {(1 − 𝑥2

𝑑2 ) (1 − 𝑥2
𝑑2 − 4𝑥2

𝑑2 ) |𝑥| ≤ 𝑑
0 |𝑥| > 𝑑

28.4 R

# Tukey's Bisquare Second Derivative
tukey_bisquare_second <- function(d){

function(x){
x[abs(x) > d] <- NA
f_x <- (1 - (x/d)^2)*((1 - (x/d)^2) - 4*(x^2)/(d^2))
f_x[is.na(f_x)] <- 0
return(f_x)

}
}
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−0.5

0.0

0.5

1.0

−6.00 −4.57 −3.57 −2.57 −1.57 0.00 4.573.572.571.57 6.00
x

ρ′′ (x
;d

)
d = 4.57 d = 3.57 d = 2.57 d = 1.57

28.5 Tukey Biweight

𝜌𝑑(𝑥) =
⎧{
⎨{⎩

(1 − 𝑥2

𝑑2 )
2

|𝑥| ≤ 𝑑

0 |𝑥| > 𝑑

28.6 R

# Tukey's Biweight Function
tukey_biweight <- function(d){

function(x){
x[abs(x) > d] <- NA
f_x <- (1 - (x/d)^2)^2
f_x[is.na(f_x)] <- 0
return(f_x)

}
}
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x

ρ(
x;

d)
d = 4.57 d = 3.57 d = 2.57 d = 1.57

28.7 Tukey-Beaton Bisquare

𝜌𝑑(𝑥) = {
3𝑥2
𝑑2 − 3𝑥4

𝑑4 + 𝑥6
𝑑6 |𝑥| ≤ 𝑑

1 |𝑥| > 𝑑

28.8 R

# Tukey-Beaton Bisquare Function
tukey_beaton_bisquare <- function(d){

function(x){
x[abs(x) > d] <- NA
f_x <- 3*(x/d)^2 - 3*(x/d)^4 + (x/d)^6
f_x[is.na(f_x)] <- 1
return(f_x)

}
}
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0.25

0.50

0.75
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−6.00 −4.57 −3.57 −2.57 −1.57 0.00 4.573.572.571.57 6.00
x

ρ(
x;

d)
d = 4.57 d = 3.57 d = 2.57 d = 1.57

28.8.1 First derivative

𝜌′
𝑑(𝑥) = {

6𝑥
𝑑2 − 12𝑥3

𝑑4 + 6𝑥5
𝑑4 |𝑥| ≤ 𝑑

0 |𝑥| > 𝑑

28.9 R

# Tukey-Beaton Bisquare First Derivative
tukey_beaton_prime <- function(d){

function(x){
x[abs(x) > d] <- NA
f_x <- 6*(1/d^2)*x - 12*(1/d^4)*(x)^3 + 6*(x)^5*(1/d^6)
f_x[is.na(f_x)] <- 0
return(f_x)

}
}
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−6.00 −4.57 −3.57 −2.57 −1.57 0.00 4.573.572.571.57 6.00
x

ρ′ (x
;d

)
d = 4.57 d = 3.57 d = 2.57 d = 1.57

28.9.1 Second derivative

𝜌′′
𝑑 (𝑥) = {

6
𝑑2 − 36𝑥2

𝑑4 + 30𝑥4
𝑑4 |𝑥| ≤ 𝑑

0 |𝑥| > 𝑑

28.10 R

# Tukey-Beaton Bisquare Second Derivative
tukey_beaton_second <- function(d){

function(x){
x[abs(x) > d] <- NA
f_x <- 6*(1/d^2) - 36*(1/d^4)*(x)^2 + 30*(x)^4*(1/d^6)
f_x[is.na(f_x)] <- 0
return(f_x)

}
}
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29 Gaussian mixture

Let’s consider a linear combination of a Bernoulli and two normal random variables, all as-
sumed to be independent, i.e.

𝑋𝑡 ∼ 𝐵𝑡 ⋅ 𝑋1,𝑡 + (1 − 𝐵𝑡) ⋅ 𝑋0,𝑡, (29.1)

where 𝐵 is a Bernoulli random variable

𝐵𝑡 ∼ Bernoulli(𝑝),

and for the 𝑖-th component
𝑋𝑖,𝑡 = 𝜇1 + 𝜎1𝑍𝑖,𝑡

where 𝑍𝑖,𝑡 is standard Normal random variable. In compact form a Gaussian Mixture with
two components is denoted as 𝑋𝑡 ∼ 𝐺𝑀(𝜇1, 𝜇0, 𝜎2

1, 𝜎2
0, 𝑝).
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(a) Simulated mixture sample.
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(c) Simulated (black) and true
(red) distribution.

Figure 29.1: Gaussian Mixture simulation and density function with true parameters 𝜇1 = −2,
𝜇2 = 2, 𝜎1 = 1, 𝜎2 = 1 and 𝑝 = 0.5.

29.1 Distribution and density

Proposition 29.1. The distribution function of a Gaussian mixture random variable is a
weighted sum between the distributions of the components, i.e.:

𝐹𝑋(𝑥) = 𝑝 ⋅ 𝐹𝑋1
(𝑥) + (1 − 𝑝)𝐹𝑋0

(𝑥), (29.2)
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Taking the derivative, it can be easily shown that the density function reads:

𝑓𝑋(𝑥) = 𝑝 ⋅ 𝑓𝑋1
(𝑥) + (1 − 𝑝)𝑓𝑋0

(𝑥). (29.3)

In general
𝑓𝑋(𝑥) = 𝑝

𝜎1
⋅ 𝜙 (𝑥 − 𝜇1

𝜎1
) + 1 − 𝑝

𝜎0
⋅ 𝜙 (𝑥 − 𝜇0

𝜎0
) , (29.4)

where Φ is the cumulative distribution function and 𝜙 is the density function of a standard
normal random variable. An implementation of the density and distribution of a Gaussian
Mixture is contained in the R package extraDistr, i.e. dmixnorm for the density and pmixnorm
for the distribution.

Proof: Proposition 29.1

Proof. From the formal definition of distribution function of a random variable 𝑋

𝐹𝑋(𝑦) = ℙ(𝑋 ≤ 𝑦) = 𝔼{𝟙𝑋≤𝑥},

where if 𝑋 is a Gaussian Mixture with two components we can express it as conditional
expectation with respect to 𝐵, i.e.

𝐹𝑋(𝑦) = 𝔼{𝟙𝑋≤𝑥|𝐵} =
= 𝔼{𝟙𝑋≤𝑥|𝐵 = 0}ℙ(𝐵 = 0) + 𝔼{𝟙𝑋≤𝑥 ∣ 𝐵 = 1}ℙ(𝐵 = 1) =
= 𝑝 ⋅ ℙ(𝑋1 ≤ 𝑥) + (1 − 𝑝) ⋅ ℙ(𝑋0 ≤ 𝑥)

Hence, standardizing the Normal random variable one obtain

𝐹𝑋(𝑥) = 𝑝 ⋅ Φ (𝑥 − 𝜇1
𝜎1

) + (1 − 𝑝) ⋅ Φ (𝑥 − 𝜇0
𝜎0

) ,

where Φ denotes the distribution function of a standard normal. Knowing that 𝑓𝑋(𝑥) =
𝑑𝐹𝑋(𝑥)

𝑑𝑥 and that 𝜙𝑋(𝑥) = 𝑑Φ(𝑥)
𝑑𝑥 , where 𝜙 is the density function of a standard normal we

obtain the result, i.e.

𝑓𝑋(𝑥) = 𝑝
𝜎1

⋅ 𝜙 (𝑥 − 𝜇1
𝜎1

) + 1 − 𝑝
𝜎0

⋅ 𝜙 (𝑥 − 𝜇0
𝜎0

) .

203

https://cran.r-project.org/web/packages/extraDistr/index.html


29.2 Moment generating function

Proposition 29.2. The moment generating function of a Gaussian mixture random variable
(Equation 29.1) in 𝑡 reads:

𝑀𝑋(𝑢) = 𝑝 ⋅ 𝑀𝑋1
(𝑢) + (1 − 𝑝) ⋅ 𝑀𝑋0

(𝑢).

where for a general 𝑖 ∈ {0, 1}, 𝑀𝑋𝑖
(𝑢) is the moment generating function of a Gaussian random

variable with moments 𝜇𝑖, 𝜎2
𝑖 , i.e.

𝑀𝑋𝑖
(𝑢) = exp {𝜇𝑖𝑢 + 𝑢2𝜎2

𝑖
2 }

Proof: Proposition 29.2

Proof. Applying the definition of moment generating function and the property of linear-
ity of the expectation on a Gaussian mixture (Equation 29.1), one obtain:

𝑀𝑋(𝑢) = 𝑝 ⋅ 𝔼{𝑒𝑢𝑍1} + (1 − 𝑝) ⋅ 𝔼{𝑒𝑢𝑍0} =
= 𝑝 ⋅ 𝑀𝑋1

(𝑢) + (1 − 𝑝) ⋅ 𝑀𝑋0
(𝑢)

Hence, the moment generating function of 𝑋 is a linear combination of the moment
generating functions of the two components.

29.3 Esscher transform

Proposition 29.3. The Esscher transform of a Gaussian mixture random variable reads:

ℰ𝜃{𝑓𝑋}(𝑥) = 𝑝1(𝜃)𝑓𝑋1
(𝑥; 𝜃) + 𝑝0(𝜃)𝑓𝑋0

(𝑥; 𝜃),

where for 𝑖 ∈ {0, 1}:

𝑓𝑋(𝑥; 𝜃) = 1
𝜎𝑖

𝜙 (𝑥 − 𝜇𝑖 − 𝜃𝜎2
𝑖

𝜎𝑖
) ,

and the distorted probabilities are defined as:

𝑝1(𝜃) = 𝑝 ⋅
𝑀𝑋1

(𝜃)
𝑀𝑋(𝜃) , 𝑝0(𝜃) = (1 − 𝑝1(𝜃)).
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Proof: Proposition 29.3

Proof. In general, the Esscher transform of a density function 𝑓𝑋 is defined as:

ℰ𝜃{𝑓𝑋}(𝑥) = 𝑒𝜃𝑥𝑓𝑋(𝑥)
𝑀𝑋(𝜃) = 𝑒𝜃𝑥𝑓𝑋(𝑥)

∫∞
−∞ 𝑒𝜃𝑦𝑓𝑋(𝑦)𝑑𝑦

.

Let’s focus only on the numerator. Substituting the density function of a Gaussian
mixture one obtain:

ℰ𝜃{𝑓𝑋}(𝑥) =
𝑒𝜃𝑋(𝑝𝑓𝑍1

(𝑥) + (1 − 𝑝)𝑓𝑍2
(𝑥))

𝑀𝑋(𝜃) .

Let’s consider the 𝑖-component for 𝑖 ∈ {0, 1} and let’s explicit the density function, i.e.

𝑒𝜃𝑥𝑓𝑍𝑖
(𝑥) = 1√

2𝜋𝜎2
𝑖

exp {−(𝑥 − 𝜇𝑖)2

2𝜎2
𝑖

+ 𝜃𝑥} .

Let’s expand the exponent of the exponential term for the 𝑖-th component, i.e.

𝜃𝑥 − (𝑥 − 𝜇)2

2𝜎2 = 𝜃𝑥 − 𝑥2 − 2𝜇𝑥 + 𝜇2

2𝜎2 =

= − 𝑥2

2𝜎2 + (𝜃 + 𝜇
𝜎2 ) 𝑥 − 𝜇2

2𝜎2

Let’s denote with 𝐴 = 𝜃 + 𝜇
𝜎2 , then complete the square

− 𝑥2

2𝜎2 + 𝐴𝑥 = − 1
2𝜎2 [𝑥2 − 2𝜎2𝐴𝑥 + 𝐴2𝜎4] + 𝐴2𝜎2

2 = (𝑥 − 𝐴𝜎2)
2𝜎2 + 𝐴2𝜎2

2 ,

Therefore

𝜃𝑥 − (𝑥 − 𝜇𝑖)2

2𝜎2
𝑖

= (𝑥 − 𝜇𝑖 − 𝜃𝜎2)
2𝜎2

𝑖
− 𝜇2

𝑖
2𝜎2

𝑖
+ (𝜃𝜎2

𝑖 + 𝜇)2

2𝜎2
𝑖

=

= (𝑥 − 𝜇𝑖 − 𝜃𝜎2
𝑖 )

2𝜎2
𝑖

− 𝜇2
𝑖

2𝜎2
𝑖

+ 𝜃2

2 + 𝜇2
𝑖

2𝜎2
𝑖

+ 𝜃𝜇𝑖 =

= (𝑥 − 𝜇𝑖 − 𝜃𝜎2
𝑖 )

2𝜎2
𝑖

+ 𝜃2

2 + 𝜃𝜇𝑖

Hence, adding and subtracting inside the exponential one obtain

𝑒𝜃𝑥𝑓𝑍𝑖
(𝑥) = 1√

2𝜋𝜎𝑖
exp {−(𝑥 − 𝜇𝑖)2

2𝜎2
𝑖

+ 𝜃𝑥−𝜇𝑖𝜃 − 𝜃2𝜎2
𝑖

2 } exp {𝜇𝑖𝜃 + 𝜃2𝜎2
𝑖

2 } =

= 1√
2𝜋𝜎𝑖

exp {𝜇𝑖𝜃 + 𝜃𝜎2
𝑖

2 } exp {−(𝑥 − 𝜇𝑖 − 𝜃𝜎2
𝑖 )2

2𝜎2
𝑖

} =

= 𝑀𝑍𝑖
(𝜃)𝑓𝑍𝑖

(𝑥; 𝜃)
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Hence, we obtain the result

𝑓𝑍𝑖
(𝑥; 𝜃) = 1

𝜎𝑖
𝜙 (𝑥 − 𝜇𝑖 − 𝜃𝜎2

𝑖
𝜎𝑖

) .

Hence, the Esscher density

ℰ𝜃{𝑓𝑋}(𝑥) =
𝑝𝑀𝑍1

(𝜃)𝑓𝑍1
(𝑥; 𝜃) + (1 − 𝑝)𝑀𝑍0

(𝜃)𝑓𝑍𝑖
(𝑥; 𝜃)

𝑀𝑋(𝜃) .

Hence let’s collect the first part and the denominator (mgf of the Gaussian mixture in 𝜃)
and define the new probabilities

𝑝1(𝜃) =
𝑝𝑀𝑋1

(𝜃)
𝑀𝑋(𝜃) , 𝑝0(𝜃) =

(1 − 𝑝)𝑀𝑋0
(𝜃)

𝑀𝑋(𝜃) .
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Figure 29.2: Esscher transform of a Gaussian mixture.

29.4 Moments

Proposition 29.4. The expectation of a Gaussian Mixture random variable (Equation 29.1)
reads:

𝔼{𝑋} = 𝑝𝜇1 + (1 − 𝑝)𝜇2, (29.5)
and the second moment

𝔼{𝑋2} = 𝑝(𝜇2
1 + 𝜎2

1) + (1 − 𝑝)(𝜇2
2 + 𝜎2

2). (29.6)

Hence, the variance

𝕍{𝑋} = 𝑝(1 − 𝑝)(𝜇1 − 𝜇2)2 + 𝜎2
1𝑝 + 𝜎2

2(1 − 𝑝). (29.7)
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Proof: Proposition 29.4

Proof. Given that 𝑋1, 𝑋0 and 𝐵 are independent, the expectation is computed as:

𝔼{𝑋} = 𝔼{𝔼{𝑋 ∣ 𝐵}} =
= 𝔼{𝑋 ∣ 𝐵 = 1}ℙ(𝐵 = 1) + 𝔼{𝑋 ∣ 𝐵 = 0}ℙ(𝐵 = 0) =
= 𝑝𝔼{𝑋1} + (1 − 𝑝)𝔼{𝑋0} =
= 𝑝𝜇1 + (1 − 𝑝)𝜇2

The second moment is computed similarly to the first one, i.e.

𝔼{𝑋2} = 𝔼{𝔼{𝑋2 ∣ 𝐵}} =
= 𝔼{𝑋2 ∣ 𝐵 = 1}ℙ(𝐵 = 1) + 𝔼{𝑋2 ∣ 𝐵 = 0}ℙ(𝐵 = 0) =
= 𝔼{𝐵}𝔼{𝑋2

1} + 𝔼{1 − 𝐵}𝔼{𝑋2
0} =

= 𝑝𝔼{𝑋2
1} + (1 − 𝑝)𝔼{𝑋2

0} =
= 𝑝(𝜇2

1 + 𝜎2
1) + (1 − 𝑝)(𝜇2

2 + 𝜎2
2)

The variance, by definition, is given by:

𝕍{𝑋} = 𝔼{𝑋2} − 𝔼{𝑋}2,

where the first moment squared is

𝔼{𝑋}2 = (𝑝𝜇1 + (1 − 𝑝)𝜇2)2 =
= 𝑝2𝜇2

1 + (1 − 𝑝)2𝜇2
2 + 2𝑝(1 − 𝑝)𝜇1𝜇2

(29.8)

Hence the variance,

𝕍{𝑋} = 𝑝(𝜇2
1 + 𝜎2

1) + (1 − 𝑝)(𝜇2
2 + 𝜎2

2) − 𝑝2𝜇2
1 − (1 − 𝑝)2𝜇2

2 − 2𝑝(1 − 𝑝)𝜇1𝜇2 =
= 𝑝𝜇2

1 + 𝑝𝜎2
1 + 𝜇2

2 + 𝜎2
2 − 𝑝𝜇2

2 − 𝑝𝜎2
2 − 𝑝2𝜇2

1 − (1 − 𝑝)2𝜇2
2 − 2𝑝(1 − 𝑝)𝜇1𝜇2 =

= 𝜇2
1𝑝(1 − 𝑝) + 𝑝𝜎2

1 + (1 − 𝑝)𝜎2
2 + 𝑝(1 − 𝑝)𝜇2

2 − 2𝑝(1 − 𝑝)𝜇1𝜇2 =
= 𝑝(1 − 𝑝)(𝜇2

1 − 𝜇2
2 − 2𝜇1𝜇2) + 𝑝𝜎2

1 + (1 − 𝑝)𝜎2
2 =

= 𝑝(1 − 𝑝)(𝜇1 − 𝜇2)2 + 𝑝𝜎2
1 + (1 − 𝑝)𝜎2

2

Equivalently, with the law of total variance:

𝕍{𝑋} = 𝕍{𝔼{𝑋 ∣ 𝐵}} + 𝔼{𝕍{𝑋 ∣ 𝐵}}

where
𝔼{𝕍{𝑋 ∣ 𝐵}} = 𝔼{𝜎2

1𝐵 + 𝜎2
0(1 − 𝐵)} =

= 𝜎2
1𝑝 + 𝜎2

0(1 − 𝑝)
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Then
𝔼{𝑋 ∣ 𝐵} = 𝜇1𝐵 + 𝜇0(1 − 𝐵) =

= 𝜇0 + (𝜇1 − 𝜇0)𝐵
and therefore

𝕍{𝔼{𝑋 ∣ 𝐵}} = 𝕍{𝜇0 + (𝜇1 − 𝜇0)𝐵} =
= (𝜇1 − 𝜇0)2𝕍{𝐵} =
= (𝜇1 − 𝜇0)2𝑝(1 − 𝑝)

The total variance:

𝕍{𝑋} = 𝕍{𝔼{𝑋 ∣ 𝐵}} + 𝔼{𝕍{𝑋 ∣ 𝐵}} =
= (𝜇1 − 𝜇0)2𝑝(1 − 𝑝) + 𝜎2

1𝑝 + 𝜎2
0(1 − 𝑝)

29.4.1 Special Cases

Proposition 29.5. If the random variable 𝑋 (Equation 29.1) is centered in zero, i.e.

𝔼{𝑋} = 𝑝𝜇1 + (1 − 𝑝)𝜇0 = 0,

then, the following expression holds

(𝜇1 − 𝜇0)2𝑝(1 − 𝑝) = 𝑝𝜇2
1 + (1 − 𝑝)𝜇2

0

Proof: Proposition 29.5

Proof. Let’s show that the following expressions

LHS = 𝑝(1 − 𝑝)(𝜇1 − 𝜇0)2 ≡ 𝑝𝜇2
1 + (1 − 𝑝)𝜇2

0 = RHS

are equivalent under the constraint

𝔼{𝑋} = 𝑝𝜇1 + (1 − 𝑝)𝜇0 = 0

Firstly let’s note that if the mixture is centered the ration between 𝜇1 and 𝜇0 is constant,
i.e.

𝜇1𝑝 + 𝜇0(1 − 𝑝) = 0 ⟹ 𝜇1 = −𝜇0𝑟
where we define the ratio 𝑟 as:

𝑟 = (1 − 𝑝)
𝑝
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Let’s now expand the LHS and substitute the relation between 𝜇1 and 𝜇0:

LHS = (𝜇1 − 𝜇0)2𝑝(1 − 𝑝) =
= 𝑝(1 − 𝑝)𝜇2

1 − 2𝑝(1 − 𝑝)𝜇1𝜇0 + 𝑝(1 − 𝑝)𝜇2
0 =

= 𝑝(1 − 𝑝) (𝑟2𝜇2
0 + 2𝑟𝜇2

0 + 𝜇2
0) =

= 𝑝(1 − 𝑝)𝜇2
0(𝑟2 + 2𝑟 + 1) =

= 𝑝(1 − 𝑝)𝜇2
0(𝑟 + 1)2

Then, we note that

(𝑟 + 1) = (1 − 𝑝
𝑝 + 1) = 1 − 𝑝 + 𝑝

𝑝 = 1
𝑝 ⟹ LHS = 𝜇2

0
1 − 𝑝

𝑝
Now, let’s consider the RHS

RHS = 𝑝𝜇2
1 + (1 − 𝑝)𝜇2

0 =
= 𝑝𝑟2𝜇2

0 + (1 − 𝑝)𝜇2
0 =

= 𝜇2
0(𝑝𝑟2 + 1 − 𝑝) =

= 𝜇2
0
1 − 𝑝

𝑝
since

(𝑝𝑟2 + 1 − 𝑝) = (𝑝(1 − 𝑝)2

𝑝2 + 1 − 𝑝) =

= ((1 − 𝑝)2 + 𝑝(1 − 𝑝)
𝑝 ) =

= (1 − 𝑝) (1 − 𝑝 + 𝑝
𝑝 ) =

= 1 − 𝑝
𝑝

Hence, the RHS and LHS are equal.

29.4.2 Central moments

Proposition 29.6. The second central moment of a Gaussian mixture reads:

𝜅2{𝑋} = (𝛿2
1 + 𝜎2

1)𝑝 + (𝛿2
0 + 𝜎2

0)(1 − 𝑝) = 𝕍{𝑋}

where for 𝑖 ∈ {0, 1}, 𝛿𝑖 = 𝜇𝑖 − 𝔼{𝑋}.
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Proof: Proposition 29.6

Proof. Developing the squares:

𝛿2
1 = (𝜇2

1 + 𝔼{𝑋}2 − 2𝜇1𝔼{𝑋})
𝛿2

0 = (𝜇2
0 + 𝔼{𝑋}2 − 2𝜇0𝔼{𝑋})

and summing

𝛿2
1𝑝 + 𝛿2

0(1 − 𝑝) = (𝜇2
1𝑝 + 𝜇2

0(1 − 𝑝)) + 𝔼{𝑋}2 − 2(𝜇1𝑝 + 𝜇0(1 − 𝑝))𝔼{𝑋} =
= (𝜇2

1𝑝 + 𝜇2
0(1 − 𝑝)) − 𝔼{𝑋}2

Thus, substituting the result in the initial expression one obtain the result.

29.5 Estimation

29.5.1 Maximum likelihood

Minimizing the negative log-likelihood gives an estimate of the parameters, i.e.

argmin
𝜇1,𝜇2,𝜎1,𝜎2,𝑝

{
𝑡

∑
𝑖=1

log(𝑓𝑋(𝑥𝑖))} ,

or equivalently maximizing the negative log-likelihood, i.e.

argmax
𝜇1,𝜇2,𝜎1,𝜎2,𝑝

{−
𝑡

∑
𝑖=1

log(𝑓𝑋(𝑥𝑖))} .

Example: ML-estimate

Table 29.1: Maximum likelihood estimates for a Gaussian Mixture.

Parameter True Estimate Log-lik Bias
𝜇1 -2.0 -1.9905803 -10332.56 0.0094197
𝜇2 2.0 2.0006381 -10332.56 0.0006381
𝜎1 1.0 1.0457653 -10332.56 0.0457653
𝜎2 1.0 1.0033373 -10332.56 0.0033373
𝑝 0.5 0.4937459 -10332.56 -0.0062541
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29.5.2 Moments matching

Let’s fix the parameter of the first component, namely 𝜇1 and 𝜎2
1 and a certain probability 𝑝.

Then let’s compute the sample estimate of the expectation of 𝑋𝑡, i.e.

𝔼{𝑋} = 1
𝑡

𝑡
∑
𝑖=1

𝑥𝑖 = ̂𝜇

and the sample variance:

𝕍{𝑋} = 1
𝑡

𝑡
∑
𝑖=1

(𝑥𝑖 − ̂𝜇)2 = �̂�2

In order to obtain an estimate of the second distribution such that the Gaussian Mixture
moments match exactly the sample estimates we solve the system for 𝜇2 and 𝜎2

2:

{ ̂𝜇 = 𝑝𝜇1 + (1 − 𝑝)𝜇2
�̂�2 = 𝑝(1 − 𝑝)(𝜇1 − 𝜇2)2 + 𝜎2

1𝑝 + 𝜎2
2(1 − 𝑝)

which lead to a unique solution, i.e.

𝜇2 = ̂𝜇 − 𝑝𝜇1
1 − 𝑝

𝜎2
2 = �̂�2 − 𝑝𝜎2

1
1 − 𝑝 − 𝑝(𝜇1 − 𝜇2)2

29.5.3 EM

To classify an existing empirical series into two groups (Bernoulli = 0 and Bernoulli = 1)
such that the empirical properties (mean and variance) of the groups match the theoretical
properties of the original normal distributions, we can use an Expectation-Maximization (EM)
algorithm. Here we summarizes the steps and formulas used in the EM algorithm routine
to classify an empirical series into two groups such that the empirical properties match the
theoretical properties of two normal distributions.

Table 29.2: EM algorithm routine

Step Description
Initialization Initialize responsibilities and other parameters.
1. E-step Calculate the responsibilities for each data point as:

𝛾𝑖1 = 𝑝⋅𝑓(𝑥𝑖|𝜇1,𝜎1)
𝑝⋅𝑓(𝑥𝑖|𝜇1,𝜎1)+(1−𝑝)⋅𝑓(𝑥𝑖|𝜇2,𝜎2) , 𝛾𝑖2 = (1−𝑝)⋅𝑓(𝑥𝑖|𝜇2,𝜎2)

𝑝⋅𝑓(𝑥𝑖|𝜇1,𝜎1)+(1−𝑝)⋅𝑓(𝑥𝑖|𝜇2,𝜎2) .
Compute 𝑛1 = ∑𝑛

𝑖=1 𝛾𝑖1 and 𝑛2 = ∑𝑛
𝑖=1 𝛾𝑖2.

2. M-step Update the parameters using the calculated responsibilities:
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Step Description
Means: 𝜇1 = 1

𝑛1
∑𝑛

𝑖=1 𝛾𝑖1𝑥𝑖, 𝜇2 = 1
𝑛2

∑𝑛
𝑖=1 𝛾𝑖2𝑥𝑖.

Variances:
𝜎2

1 = 1
𝑛1−1 ∑𝑛1

𝑖=1 𝛾𝑖1(𝑥𝑖 − 𝜇1)2, 𝜎2
2 = 1

𝑛2−1 ∑𝑛2
𝑖=1 𝛾𝑖2(𝑥𝑖 − 𝜇2)2

Bernoulli probability: 𝑝 = 𝑛1
𝑛 .

3.
Log-likelihood

Calculate the log-likelihood for convergence check.

4. Check
convergence

Check if the change in log-likelihood is below a threshold, otherwise
come back to 1.

Output Series of Bernoulli 𝐵𝑡 and the optimal parameters {𝜇1, 𝜇2, 𝜎1, 𝜎2, 𝑝}.

Table 29.3: Estimated Gaussian Mixture moments with EM

statistic emp opt hat
Mean 2.516087 2.516087 2.516087
Std. Dev 2.958034 2.957904 2.957879

0

4

8

0 1000 2000 3000 4000 5000
t

X

Distribution 1 Distribution 2

Figure 29.3: Classified simulated series with EM
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29.5.4 Matrix moments matching

Proposition 29.7. Any finite K-component Gaussian mixture with finite moments admits
a more parsimonious moment-matching approximation with only two-component Gaussian
mixture. We start with the parameters of the mixture at time 𝑡 + ℎ and we adjust them to
match the first three moments of the multinomial mixture. The procedure ensures that the
resulting distribution will have mean:

𝔼{𝑈𝑡+ℎ ∣ ℱ𝑡} = M(𝑡, 0, ℎ)
𝕍{𝑈𝑡+ℎ ∣ ℱ𝑡} = S(𝑡, 0, ℎ)
𝔼{𝑈𝑡+ℎ ∣ ℱ𝑡} = Ω(𝑡, 0, ℎ)

where

Ω(𝑡, 0, ℎ) = 𝔼{𝑈3
𝑡+ℎ ∣ ℱ𝑡} =

ℎ−1
∑
𝑗=0

𝔼{𝜓3
𝑡+ℎ−𝑗 ∣ ℱ𝑡}𝔼{𝑢3

𝑡+ℎ−𝑗}

In general, the variance and the skewness do not converge to a constant number for all 𝑡, but
will depends on the skewness of the starting point at 𝑡 + 1 till the ending point at 𝑡 + ℎ and
needs to be recomputed each time. The parameters of the resulting mixture will be:

𝜇⋆
1,𝑡+ℎ = √Σ𝑡+ℎ 𝜇1,𝑡+ℎ 𝜇⋆

0,𝑡+ℎ = √Σ𝑡+ℎ 𝜇0,𝑡+ℎ

and variances:

𝜎⋆2
1,𝑡+ℎ =

(Σ𝑡+ℎ − 𝑝𝑡+ℎ𝜇⋆2
1,𝑡+ℎ − (1 − 𝑝𝑡+ℎ)𝜇⋆2

0,𝑡+ℎ) ⋅ 3𝜇⋆
0,𝑡+ℎ(1 − 𝑝𝑡+ℎ) − (Ω𝑡+ℎ − 𝑝𝑡+ℎ𝜇⋆3

1,𝑡+ℎ − (1 − 𝑝𝑡+ℎ)𝜇⋆3
0,𝑡+ℎ) (1 − 𝑝𝑡+ℎ)

3𝑝𝑡+ℎ(1 − 𝑝𝑡+ℎ)(𝜇⋆
0,𝑡+ℎ − 𝜇⋆

1,𝑡+ℎ)
(29.9)

and

𝜎⋆2
0,𝑡+ℎ =

(Ω𝑡+ℎ − 𝑝𝑡+ℎ𝜇3∗
1,𝑡+ℎ − (1 − 𝑝𝑡+ℎ)𝜇3∗

0,𝑡+ℎ) 𝑝𝑡+ℎ − 3𝜇⋆
1,𝑡+ℎ (Σ𝑡+ℎ − 𝑝𝑡+ℎ𝜇⋆2

1,𝑡+ℎ − (1 − 𝑝𝑡+ℎ)𝜇2∗
0,𝑡+ℎ) 𝑝𝑡+ℎ

3𝑝𝑡+ℎ(1 − 𝑝𝑡+ℎ)(𝜇∗
0,𝑡+ℎ − 𝜇∗

1,𝑡+ℎ)
(29.10)

Proof. Let’s consider the following approach. We start by fixing the mixture probabilities at
time 𝑡 + ℎ, i.e. 𝑝𝑡+ℎ. Then, we consider the means and variances parameters of the mixture at
time 𝑡+ℎ free to vary and we adjust them to match the first three central moments of the true
multinomial mixture with a two component Gaussian mixture. More precisely, let’s define:

𝜇∗
𝑖,𝑡+ℎ = 𝜇𝑌𝑖

(𝑡, ℎ), 𝜎2∗
𝑖,𝑡+ℎ = 𝜎2

𝑌𝑖
(𝑡, ℎ) (29.11)

Recalling the central moments as in ?@eq-proof-ut-moments we have that, with the param-
eters defined as in Equation 29.11, the resulting expected value and variance already matches
the exact expectation and variance of the multinomial mixture. To improve the match between
the two distributions, one can explicit also the third central moment, i.e.

𝜔𝑡+ℎ = (3𝜎2∗
1,𝑡+ℎ𝜇∗

1,𝑡+ℎ + 𝜇3∗
1,𝑡+ℎ𝑝𝑡+ℎ) + (3𝜎2∗

0,𝑡+ℎ𝜇∗
0,𝑡+ℎ + 𝜇3∗

0,𝑡+ℎ)(1 − 𝑝𝑡+ℎ)
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In this way, one can set a system to adjust the variances 𝜎∗2
𝑖,𝑡+ℎ such that the second and the

third central moments of the Gaussian mixture with two components matches the ones of the
multinomial mixture. More precisely, the third central moment of 𝑦𝑡+ℎ reads:

𝜅3{𝑦𝑡+ℎ ∣ ℱ𝑡} =
ℎ−1
∑
𝑗=𝑠

𝔼{𝜓3
𝑡+ℎ−𝑗 ∣ ℱ𝑡}𝔼{𝑢3

𝑡+ℎ−𝑗}.

Let’s denote the target moments as:

Σ𝑡+ℎ = 𝜅2{𝑦𝑡+ℎ ∣ ℱ𝑡} Ω𝑡+ℎ = 𝜅3{𝑦𝑡+ℎ ∣ ℱ𝑡}

and let’s represent the system in matrix form

( 𝑝𝑡+ℎ 1 − 𝑝𝑡+ℎ
3𝑝𝑡+ℎ𝜇∗

1,𝑡+ℎ 3(1 − 𝑝𝑡+ℎ𝜇∗
0,𝑡+ℎ))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

D

(𝜎2⋆
1,𝑡+ℎ

𝜎2⋆
0,𝑡+ℎ

)
⏟⏟⏟⏟⏟

�⋆t+h

= (Σ𝑡+ℎ − 𝑝𝑡+ℎ𝜇2∗
1,𝑡+ℎ − (1 − 𝑝𝑡+ℎ)𝜇2∗

0,𝑡+ℎ
Ω𝑡+ℎ − 𝑝𝑡+ℎ𝜇3∗

1,𝑡+ℎ − (1 − 𝑝𝑡+ℎ)𝜇2∗
0,𝑡+ℎ

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

G

The solution of the system has the form DΣ⋆ = G ⟺ Σ⋆ = D−1G. The determinant of the
matrix D is different from zero only if 𝜇∗

1,𝑡+ℎ ≠ 𝜇∗
0,𝑡+ℎ, i.e.

det(D) = 3𝑝𝑡+ℎ(1 − 𝑝𝑡+ℎ)(𝜇∗
0,𝑡+ℎ − 𝜇∗

1,𝑡+ℎ).

By applying Cramer’s rule the system can be solved explicitly for 𝑖 ∈ {0, 1}, i.e.

𝜎2⋆
𝑖,𝑡+ℎ = det(D𝑖)

det(D) (29.12)

Where D1 is obtained by replacing the first column of D with the first column of G, i.e.

D1 = (Σ𝑡+ℎ − 𝑝𝑡+ℎ𝜇2∗
1,𝑡+ℎ − (1 − 𝑝𝑡+ℎ)𝜇2∗

0,𝑡+ℎ 1 − 𝑝𝑡+ℎ
Ω𝑡+ℎ − 𝑝𝑡+ℎ𝜇3⋆

1,𝑡+ℎ − (1 − 𝑝𝑡+ℎ)𝜇3∗
0,𝑡+ℎ 3(1 − 𝑝𝑡+ℎ)𝜇∗

0,𝑡+ℎ
)

Then:
det(D1) = (Σ𝑡+ℎ − 𝑝𝑡+ℎ𝜇⋆2

1,𝑡+ℎ − (1 − 𝑝𝑡+ℎ)𝜇⋆2
0,𝑡+ℎ) ⋅ 3(1 − 𝑝𝑡+ℎ)𝜇⋆

0,𝑡+ℎ+
− (1 − 𝑝𝑡+ℎ) (Ω𝑡+ℎ − 𝑝𝑡+ℎ𝜇⋆3

1,𝑡+ℎ − (1 − 𝑝𝑡+ℎ)𝜇⋆3
0,𝑡+ℎ)

Similarly for the second component D0 is obtained by replacing the second column of D with
the second column of G, i.e.

D0 = ( 𝑝𝑡+ℎ Σ𝑡+ℎ − 𝑝𝑡+ℎ𝜇⋆2
1,𝑡+ℎ − (1 − 𝑝𝑡+ℎ)𝜇⋆2

0,𝑡+ℎ
3𝑝𝑡+ℎ𝜇⋆

1,𝑡+ℎ Ω𝑡+ℎ − 𝑝𝑡+ℎ𝜇⋆3
1,𝑡+ℎ − (1 − 𝑝𝑡+ℎ)𝜇⋆3

0,𝑡+ℎ
)

Then:
det(D0) = 𝑝𝑡+ℎ ⋅ (Ω𝑡+ℎ − 𝑝𝑡+ℎ𝜇⋆3

1,𝑡+ℎ − (1 − 𝑝𝑡+ℎ)𝜇⋆3
0,𝑡+ℎ) +

− 3𝑝𝑡+ℎ𝜇⋆
1,𝑡+ℎ ⋅ (Σ𝑡+ℎ − 𝑝𝑡+ℎ𝜇⋆2

1,𝑡+ℎ − (1 − 𝑝𝑡+ℎ)𝜇⋆2
0,𝑡+ℎ)

Substituting and developing Equation 29.12, one obtain the explicit solutions of the system.
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30 Calculus

30.1 Fundamental limits

Table 30.1: Fundamental limits

lim𝑥→0
sin 𝑥

𝑥 = 1 lim𝑥→0
ln(1+𝑥)

𝑥 = 1 lim𝑥→0
𝑒𝑥−1

𝑥 = 1
lim𝑥→0 (1 + 1

𝑥)𝑥 = 𝑒 lim𝑥→0
log𝑎(1+𝑥)

𝑥 = log𝑎 𝑒 lim𝑥→0
𝑎𝑥−1

𝑥 = ln 𝑎

30.2 Derivatives

Table 30.2: Fundamental derivatives

Function 𝑓(𝑥) Derivative 𝑓 ′(𝑥)
𝑦 = 𝑎, 𝑎 ∈ ℝ 𝑦′ = 0
𝑦 = 𝑥𝑛, 𝑛 ∈ ℕ 𝑦′ = 𝑛𝑥𝑛−1

𝑦 = 𝑥𝛼, 𝛼 ∈ ℝ 𝑦′ = 𝛼𝑥𝛼−1

𝑦 = 𝑥 1
𝑛 , 𝑛 > 0 𝑦′ = 1

𝑛𝑥 1
𝑛 −1

𝑦 = sin 𝑥 𝑦′ = cos 𝑥
𝑦 = cos 𝑥 𝑦′ = − sin 𝑥
𝑦 = tan 𝑥 𝑦′ = 1

cos2 𝑥 = 1 + tan2 𝑥
𝑦 = cot 𝑥 𝑦′ = − 1

sin2 𝑥 = −(1 + cot2 𝑥)
𝑦 = arcsin 𝑥 𝑦′ = 1√

1−𝑥2

𝑦 = arccos 𝑥 𝑦′ = − 1√
1−𝑥2

𝑦 = arctan 𝑥 𝑦′ = 1
1+𝑥2

𝑦 = arccot 𝑥 𝑦′ = − 1
1+𝑥2

𝑦 = 𝑎𝑥 𝑦′ = 𝑎𝑥 ln 𝑎
𝑦 = 𝑒𝑥 𝑦′ = 𝑒𝑥

𝑦 = log𝑎 𝑥 𝑦′ = 1
𝑥 ln 𝑎

𝑦 = ln 𝑥 𝑦′ = 1
𝑥

𝑓(𝑥) = 𝑐 ⋅ 𝑔(𝑥) 𝑓 ′(𝑥) = 𝑐 ⋅ 𝑔′(𝑥)
𝑓(𝑥) = 𝑔(𝑥) + 𝑠(𝑥) 𝑓 ′(𝑥) = 𝑔′(𝑥) + 𝑠′(𝑥)
𝑓(𝑥) = 1

𝑔(𝑥) 𝑓 ′(𝑥) = − 𝑔′(𝑥)
𝑔(𝑥)2
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Function 𝑓(𝑥) Derivative 𝑓 ′(𝑥)

• Derivative of the product:

[𝑓(𝑥) ⋅ 𝑔(𝑥)]′(𝑥) = 𝑓 ′(𝑥)𝑔(𝑥) + 𝑓(𝑥)𝑔′(𝑥)

• Derivative of the ratio:

[𝑓(𝑥)
𝑔(𝑥) ]

′
(𝑥) = 𝑓 ′(𝑥)𝑔(𝑥) − 𝑓(𝑥)𝑔′(𝑥)

[𝑔(𝑥)]2

• Derivative of the composition:

[𝑓(𝑔(𝑥))]′(𝑥) = 𝑔′(𝑥) ⋅ 𝑓 ′(𝑔(𝑥))

Example derivative of the composition

For example 𝑓(𝑔(𝑥)) = ln(1 + 2𝑥), then 𝑓(𝑥) = ln(𝑥) and 𝑔(𝑥) = 1 + 2𝑥, hence

[ln(1 + 2𝑥)]′(𝑥) = [1 + 2𝑥]′(𝑥) ⋅ [ln(𝑥)]′(1 + 𝑥)

30.2.1 Taylor series

𝑓(𝑥) =
∞

∑
𝑛=1

𝑓 (𝑛)(𝑎)
𝑛! (𝑥 − 𝑎)𝑛 = 𝑓(𝑎) + 𝑓 ′(𝑎)(𝑥 − 𝑎) + 𝑓 ′′(𝑎)

2! (𝑥 − 𝑎)2 + … (30.1)

30.3 Integrals

Table 30.3: Fundamental integrals

Immediate General

∫ 𝑥𝑛𝑑𝑥 = 𝑥𝑛+1
𝑛+1 + 𝑐 ∫ 𝑓(𝑥)𝑛𝑑𝑥 = 𝑓(𝑥)𝑛+1

𝑛+1 + 𝑐
∫ 1

𝑥𝑑𝑥 = log(𝑥) + 𝑐 ∫ 𝑓′(𝑥)
𝑓(𝑥) 𝑑𝑥 = log(𝑓(𝑥)) + 𝑐

∫ 𝑎𝑥𝑑𝑥 = log𝑎(𝑒) + 𝑐 ∫ 𝑎𝑓(𝑥)𝑓 ′(𝑥)𝑑𝑥 = 𝑎𝑓(𝑥) log𝑎(𝑒) + 𝑐
∫ 𝑒𝑥𝑑𝑥 = 𝑒𝑥 + 𝑐 ∫ 𝑒𝑥𝑓 ′(𝑥)𝑑𝑥 = 𝑒𝑓(𝑥) + 𝑐
∫ sin(𝑥)𝑑𝑥 = − cos(𝑥) + 𝑐 ∫ sin(𝑓(𝑥))𝑓 ′(𝑥)𝑑𝑥 = − cos(𝑓(𝑥)) + 𝑐
∫ cos(𝑥)𝑑𝑥 = sin(𝑥) + 𝑐 ∫ cos(𝑓(𝑥))𝑓 ′(𝑥)𝑑𝑥 = sin(𝑓(𝑥)) + 𝑐
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Immediate General

∫ 1
cos(𝑥)2 𝑑𝑥 = tan(𝑥) + 𝑐 ∫ 𝑓′(𝑥)

cos(𝑓(𝑥))2 𝑑𝑥 = tan(𝑓(𝑥)) + 𝑐
∫ 1

sin(𝑥)2 𝑑𝑥 = cot(𝑥) + 𝑐 ∫ 𝑓′(𝑥)
sin(𝑓(𝑥))2 𝑑𝑥 = cot(𝑓(𝑥)) + 𝑐

∫ 1√
1−𝑥2 𝑑𝑥 = arcsin(𝑥) + 𝑐 ∫ 𝑓′(𝑥)

√1−𝑓(𝑥)2 𝑑𝑥 = arcsin(𝑓(𝑥)) + 𝑐
∫ 1√

𝑎2−𝑥2 𝑑𝑥 = arcsin(𝑥
𝑎 ) + 𝑐 ∫ 𝑓′(𝑥)

√𝑎2−𝑓(𝑥)2 𝑑𝑥 = arcsin(𝑓(𝑥)
𝑎 ) + 𝑐

∫ 1√
1+𝑥2 𝑑𝑥 = arctan(𝑥) + 𝑐 ∫ 𝑓′(𝑥)

√1+𝑓(𝑥)2 𝑑𝑥 = arctan(𝑓(𝑥)) + 𝑐

30.3.1 Fundamental theorem

𝑓(𝑏) − 𝑓(𝑎) = ∫
𝑏

𝑎
𝑓 ′(𝑥)𝑑𝑥 ⟺ ∫ 𝑓 ′(𝑥)𝑑𝑥 = 𝑓(𝑥) + 𝐶

30.3.2 Integration by parts

∫
𝑏

𝑎
𝑓(𝑥)𝑔′(𝑥)𝑑𝑥 = [𝑓(𝑥)𝑔(𝑥)]𝑥=𝑏

𝑥=𝑎 − ∫
𝑏

𝑎
𝑓 ′(𝑥)𝑔(𝑥)𝑑𝑥

or in compact form:

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑔(𝑥) = [𝑓(𝑥)𝑔(𝑥)]𝑥=𝑏

𝑥=𝑎 − ∫
𝑏

𝑎
𝑔(𝑥)𝑑𝑓(𝑥)𝑑𝑥
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31 Probability

Definition 31.1. (Absolutely continuous)
Consider a measure space (Ω, ℬ), then a measure 𝜇 is said to be absolutely continuous with
respect to 𝜈, namely 𝜇 << 𝜈, iff:

𝜇 << 𝜈 ⟺ 𝜇(𝐵) = 0 ⟹ 𝜈(𝐵) = 0 ∀𝐵 ∈ ℬ

Definition 31.2. (Concentration)
Consider a measure space (Ω, ℬ), then a measure 𝜇 concentrates on 𝐵 ∈ ℬ, if 𝜇(𝐵𝑐) = 0.

Definition 31.3. (Mutually singular)
Consider a measure space (Ω, ℬ), then two measures 𝜇 and 𝜈 are said to be mutually singular
if for any disjoint set 𝐴∩𝐵 = ∅, 𝐴, 𝐵 ∈ ℬ we have that 𝜇 concentrates on 𝐴 and 𝜈 concentrates
on 𝐵.

Definition 31.4. (𝜎-finite)
Consider a measure space (Ω, ℬ), then a measure 𝜇 is said to be 𝜎-finite if exists a countable
partition 𝐵1, 𝐵2, … , ⊂ Ω such that ∀𝑖 we have that 𝐵𝑖 ∈ ℬ and 𝜇(𝐵𝑖) < ∞. In other words,
a measure is 𝜎-finite, when we are able to divide the sample space in a countable partition of
sets such that each one is in ℬ and has finite measure. Note that this do not imply that the
measure of Ω is finite. In fact, consider for example the Lebesgue measure 𝑚 on ℝ, then we
obtain 𝑚(ℝ) = ∞. However, since we can partition ℝ in a countable series of intervals, each
one with finite length, then the Lebesgue measure is 𝜎-finite.
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32 Linear Algebra

32.1 Vector multiplication

Consider a vector of this form,

y
𝑛×1

=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑦1
⋮

𝑦𝑖
⋮

𝑦𝑛

⎞⎟⎟⎟⎟⎟⎟
⎠

,

then

y
𝑛×1

y
𝑛×1

⊤ = y
𝑛×1

y
1×𝑛

= y
𝑛×𝑛

=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑦2
1 … 𝑦1𝑦𝑖 … 𝑦1𝑦𝑛
⋮ ⋱ ⋮ ⋮

𝑦𝑖𝑦1 … 𝑦2
𝑖 … 𝑦𝑖𝑦𝑛

⋮ ⋮ ⋱ ⋮
𝑦𝑛𝑦1 … 𝑦𝑛𝑦𝑖 … 𝑦2

𝑛

⎞⎟⎟⎟⎟⎟⎟
⎠

,

and
y

𝑛×1
⊤ x

𝑛×1
= y

1×𝑛
y

𝑛×1
=

𝑛
∑
𝑖=1

𝑦2
𝑖 = 𝑦

1×1
.

32.2 Matrix multiplication

Consider a matrix of this form,

X
𝑛×𝑘

=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑥11 … 𝑥1𝑗 … 𝑥1𝑘
⋮ ⋱ ⋮ ⋮

𝑥11 … 𝑥𝑖𝑗 … 𝑥𝑖𝑘
⋮ ⋮ ⋱ ⋮

𝑥𝑛1 … 𝑥𝑛𝑗 … 𝑥𝑘

⎞⎟⎟⎟⎟⎟⎟
⎠

,
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then

M
𝑘×𝑘

= X
𝑛×𝑘

⊤ X
𝑛×𝑘

=
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

∑𝑛
𝑖=1 𝑥2

𝑖1 … ∑𝑛
𝑖=1 𝑥𝑖1𝑥𝑖𝑗 … ∑𝑛

𝑖=1 𝑥𝑖1𝑥𝑖𝑘
⋮ ⋱ ⋮ ⋮

∑𝑛
𝑖=1 𝑥𝑖𝑗𝑥𝑖1 … ∑𝑛

𝑖=1 𝑥2
𝑖𝑗 … ∑𝑛

𝑖=1 𝑥𝑖𝑗𝑥𝑖𝑘
⋮ ⋮ ⋱ ⋮

∑𝑛
𝑖=1 𝑥𝑖𝑘𝑥𝑖1 … ∑𝑛

𝑖=1 𝑥𝑖𝑘𝑥𝑖𝑗 … ∑𝑛
𝑖=1 𝑥2

𝑖𝑘

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

,

and

m
𝑘×1

= X
𝑛×𝑘

⊤ y
𝑛×1

=
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

∑𝑛
𝑖=1 𝑥𝑖1𝑦𝑖

⋮
∑𝑛

𝑖=1 𝑥𝑖𝑗𝑦𝑖
⋮

∑𝑛
𝑖=1 𝑥𝑖𝑘𝑦𝑖

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

.

32.3 Special matrices

32.3.1 Basis vector

e⊤
𝑝 = (1 0 … 0) . (32.1)

The standard basis vector of length p with 1 in the first position and 0 elsewhere.

32.3.2 Matrix of ones

In mathematics, a matrix of ones (also called an all-ones matrix) is a matrix where every entry
equals 1, i.e.

J2 = (1 1
1 1) J3 = ⎛⎜

⎝

1 1 1
1 1 1
1 1 1

⎞⎟
⎠

J3,2 = ⎛⎜
⎝

1 1
1 1
1 1

⎞⎟
⎠

J2,3 = (1 1 1
1 1 1)

(32.2)

In general, When two indices are provided, e.g., J3,2, the first indicates the number of rows
and the second the number of columns. When only one index is given, e.g., J3, it denotes a
square matrix of size 3 × 3. Some basic matrix operations include:

• J𝑛,1 ⋅ J1,𝑛 = J𝑛
• J1,𝑛 ⋅ J𝑛,1 = J1 = 1
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32.3.3 Identity matrix

In linear algebra, the identity matrix of size 𝑛 is the 𝑛 × 𝑛 square matrix with ones on the
main diagonal and zeros elsewhere, i.e.

I1 = (1) , I2 = (1 0
0 1) , I3 = ⎛⎜

⎝

1 0 0
0 1 0
0 0 1

⎞⎟
⎠

, I3 =
⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

. (32.3)

32.4 Determinant

The determinant is a scalar value that can be computed from a square matrix. It provides
important information about the matrix, such as whether it is invertible, its volume-scaling
factor in linear transformations, and the linear dependence of its rows or columns. For a matrix
A ∈ ℝ𝑛×𝑛, the determinant is denoted det(A). Consider two matrices A𝑛×𝑛 and B𝑛×𝑛, then
the determinant satisfies some properties.

1. Scalar: 𝑎 det(A) = 𝑎𝑛 det(A) for 𝑎 ∈ ℝ.
2. Transpose: det(A⊤) = det(A).
3. Multiplication: det(AB) = det(A) det(B).
4. Inverse: det(A−1) = 1

det(A) .
5. Rank: if

• det(A) ≠ 0 then 𝑟𝑎𝑛𝑘(A) = max = 𝑛.
• det(A) = 0 then 𝑟𝑎𝑛𝑘(A) < max = 𝑛.

The determinant of an 𝑛 × 𝑛 matrix can be computed by expanding along any row or column.
Expanding along the i-th row gives:

det(A) =
𝑛

∑
𝑗=1

(−1)𝑖+𝑗𝑎𝑖𝑗 det(M𝑖𝑗). (32.4)

where M𝑖𝑗 is the sub-matrix without the 𝑖-th row and the 𝑗-th column. For example considering
a 2 × 2 matrix, the determinant simplifies to a well-known formula:

A = (𝑎 𝑏
𝑐 𝑑) ⟹ det(A) = 𝑎𝑑 − 𝑏𝑐. (32.5)
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Determinant of a 3 × 3 matrix with Laplace recursion

Let’s consider a generic 3 × 3 matrix, i.e.

A = ⎛⎜
⎝

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎞⎟
⎠

,

then, let’s fix the row 𝑖 = 1 and develop the Laplace expansion (Equation 32.4), i.e.

det(A) = (−1)1+1𝑎11M11 + (−1)1+2𝑎12M12 + (−1)1+3𝑎13M13 =
= 𝑎11M11 − 𝑎12M12 + 𝑎13M13

(32.6)

where the sub-matrices M11, M12 and M13 read explicitly as:

M11 = (𝑎22 𝑎23
𝑎32 𝑎33

) , M12 = (𝑎21 𝑎23
𝑎31 𝑎33

) , M13 = (𝑎21 𝑎22
𝑎31 𝑎32

) .

Then, the determinant of 2 × 2 matrices is easily computable as:

det(M11) = det (𝑎22 𝑎23
𝑎32 𝑎33

) = 𝑎22𝑎33 − 𝑎23𝑎32

det(M12) = det (𝑎21 𝑎23
𝑎31 𝑎33

) = 𝑎21𝑎33 − 𝑎23𝑎31

det(M13) = det (𝑎21 𝑎22
𝑎31 𝑎32

) = 𝑎21𝑎32 − 𝑎22𝑎31

(32.7)

Finally, coming back to Equation 32.6 and substituting the result in Equation 32.7 one
obtain:

det(A) = 𝑎11(𝑎22𝑎33 − 𝑎23𝑎32) − 𝑎12(𝑎21𝑎33 − 𝑎23𝑎31) + 𝑎13(𝑎21𝑎32 − 𝑎22𝑎31).

32.5 Trace

The trace of a square matrix A ∈ ℝ𝑛×𝑛 is the sum of its diagonal elements. It is also equal to
the sum of the eigenvalues 𝜆𝑖 of A, counted with algebraic multiplicity, i.e.

tr(A) =
𝑛

∑
𝑖=1

𝑎𝑖𝑖 =
𝑛

∑
𝑖=1

𝜆𝑖. (32.8)

Some properties of the trace operator includes:
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1. tr(A⊤) = tr(A).
2. tr(A + B) = tr(A) + tr(B).
3. tr(𝑎A) = 𝑎 ⋅ tr(A) for 𝑎 ∈ ℝ.
4. tr(A𝑛) = ∑𝑛

𝑖=1 𝜆𝑛
𝑖 where 𝜆𝑖 is the 𝑖-th eigenvalue of A.

5. tr(A−1) = ∑𝑛
𝑖=1

1
𝜆𝑖

.
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33 Notable relations between distributions

33.1 Chi squared

The chi2 distribution with 𝜈 degrees of freedom, namely 𝜒2(𝜈), is defined as the sum of 𝜈-
independent and identically distributed standard normal random variables squared for 𝑖 =
1, … , 𝜈, i.e.

{𝑍𝑖 ∼ 𝒩(0, 1) ∀𝑖
𝑍𝑖 ⟂ 𝑍𝑗 ∀𝑖 ≠ 𝑗 ⟹ 𝑋 = 𝑍2

1 + ⋯ + 𝑍2
𝜈 ∼ 𝜒2(𝜈) (33.1)

The chi-squared distribution 𝜒2(𝜈) is a special case of the gamma distribution, i.e.

𝑋 ∼ 𝜒2(𝜈) ⟺ 𝑋 ∼ Gamma (𝛼 = 𝜈
2 , 𝜃 = 2)

Sum of 𝜒2 random variables

The sum of two 𝜒2 is again 𝜒2 if and only if 𝜒2
𝜈1

and 𝜒2
𝜈2

are independent, formally:

𝜒2(𝜈1) ⟂ 𝜒2(𝜈2) ⟹ 𝜒2(𝜈1) + 𝜒2(𝜈2) ∼ 𝜒2(𝜈1 + 𝜈2)
If they are not independent their sum is not 𝜒2 distributed.

33.1.1 Moments

Table 33.1: Moments of a 𝜒2 random variable

Expectation Variance Skewness Excess Kurtosis

𝜈 2𝜈 √ 8
𝜈

12
𝜈
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33.1.2 Relations with others distributions

1. 1
𝜈 𝜒2(𝜈)

𝑝
⟶

𝜈→∞
1.

2. 𝜒2(𝜈)−𝜈√
2𝜈

𝑑⟶
𝜈→∞

𝒩(0, 1).
3. If x ∼ 𝒩(0, Σ) then x𝑇 Σ−1x ∼ 𝜒2(𝑘).
4. A generalization of property 3. to non-central distributions: if x ∼ 𝒩(𝜇, Σ) then

x𝑇 Σ−1x ∼ 𝜒2(𝑘, 𝛿) where 𝛿 = 𝜇𝑇 Σ𝜇.

33.2 Student-t

The Student-t distribution with 𝜈 degrees of freedom, namely 𝑡(𝜈), is defined as the ratio of
two independent random variables. In specific, a standard normal random variable 𝑍 and the
square root of a 𝜒2(𝜈) divided by its degrees of freedom 𝜈, i.e.

⎧{
⎨{⎩

𝑍 ∼ 𝒩(0, 1)
𝑉 ∼ 𝜒2(𝜈)
𝑍 ⟂ 𝑉

⟹ 𝑋 =
√𝜈 𝑍√

𝑉 ∼ 𝑡(𝜈) (33.2)

Given a location parameter 𝜇 and a scale parameter 𝜎2 the Student-t random variable admits
the following stochastic representation:

𝑋 = 𝜇 + 𝜎
√𝜈 𝑌√

𝑉 ∼ 𝑡(𝜇, 𝜎2, 𝜈)

33.2.1 Moments

Table 33.2: Moments of a Student-t random variable 𝑋 ∼ 𝑡(𝜇, 𝜎, 𝜈).

Expectation Variance Skewness Excess Kurtosis
𝜇 𝜈

𝜈−2𝜎2 0 6
𝜈−4 , 𝜈 > 4

33.2.2 Relations with others distributions

1. 𝑡(𝜈) 𝑑⟶
𝜈→∞

𝒩(0, 1).
2. 𝑡(𝜈)2 ≡ 𝐹(1, 𝜈).

226

https://en.wikipedia.org/wiki/Student%27s_t-distribution


33.3 Fisher–Snedecor

The Fisher–Snedecor distribution with 𝜈1 and 𝜈2 degrees of freedom, often denoted as F, is
defined as the ratio of two independent chi2 random variables, each one divided by its degrees
of freedom, i.e.

{𝑉1 ∼ 𝜒2(𝜈1)
𝑉2 ∼ 𝜒2(𝜈2) ⟹ 𝑋 =

𝑉1
𝜈1
𝑉2
𝜈2

∼ F(𝜈1, 𝜈2) (33.3)

33.3.1 Relations with others distributions

1. 𝜈2 F(𝜈1, 𝜈2) 𝑑⟶
𝜈2→∞

𝜒2(𝜈1).
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